


U.S. GEOLOGICAL SURVEY NATIONAL COMPUTER 
TECHNOLOGY MEETING: PROCEEDINGS, PHOENIX, 
ARIZONA, NOVEMBER 14-I 8, 1988 

By Barbara H. Balthrop and John E. Terry, editors 

U.S. GEOLOGICAL SURVEY 

Water-Resources Investigations Report 90-4 162 

Nashville, Tennessee 

1991 

reidell
 Click here to return to USGS Publications

../index.html
http://www.usgs.gov/


U.S. DEPARTMENT OF THE INTERIOR 
MANUEL LUJAN, JR., Secretary 

U.S. GEOLOGICAL SURVEY 
Dallas L. Peck, Director 

For additional information write to: Copies of this report can be purchased from: 

Coordinator, National Computer Technology 
Meeting Proceedings 1988 

U. S. Geological Survey 
300 W. Congress 
Federal Building, FB-44 
Tucson, Arizona 85701 

U.S. Geological Survey 
Books and Open-File Reports Section 
Federal Center 
Box 25425 
Denver, Colorado 80225 



FOREWORD 

The U.S. Geological Survey National Computer Technology Meetings (NCTM) are 
sponsored by the Water Resources Division and provide a forum for the presentation of technical 
papers and the sharing of ideas or experiences related to computer technology. This report 
serves as a proceedings of the meeting held in November, 1988 at the Crescent Hotel in Phoenix, 
Arizona. The meeting was attended by more than 200 technical and managerial people 
representing all Divisions of the U.S. Geological Survey. 

Scientists in every Division of the U.S. Geological Survey rely heavily upon state-of-the-art 
computer technology (both hardware and sofnuare). Today the goals of each Division are 
pursued in an environment where high speed computers, distributed communications, distributed 
data bases, high technology input/output devices, and very sophisticated simulation tools are 
used regularly. Therefore, information transfer and the sharing of advances in technology are 
very important issues that must be addressed regularly. 

This report contains complete papers and abstracts of papers that were presented at the 
1988 NCTM. The report is divided into topical sections that reflect common areas of interest and 
application. In each section, papers are presented first followed by abstracts. For these 
proceedings, the publication of a complete paper or only an abstract was at the discretion of the 
author, although complete papers were encouraged. 

Some papers presented at the 1988 NCTM are not published in these proceedings. 

John E. Terry 

. . . 
111 



CONTENTS 
Page 

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 

CHAPTER A--USGS COMPUTER MANAGEMENT/ADMINISTRATION 

Magnetic-tape backup and routine maintenance procedures for a minicomputer 
system of the U.S. Geological Survey 

JohnE.Owen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u I . . . 3 

The development of distributor software for transmitting documents through a 
computer network 

Steven J. Brady . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

CHAPTER B--DIS/DISTRIBUTED ENVIRONMENT 

Supporting different types of terminals in a distributed-information environment 
J.W. Atwood and S.D. Bartholoma . . . . . . . . . . . . . . . . . . . . . . . . . 11 

CHAPTER C--GIS APPLICATIONS IN USGS 

Displaying data from the National Water Data Exchange by use of a geographical 
information system 

BruceParks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 

Using a geographic information system to determine physical basin characteristics 
for use in flood-frequency equations 

James J. Majure and P.J. Soenksen . . . . . . . . . . . . . . . . . . . . . . . . . 31 

CHAPTER D--COMPUTER GENERATED GRAPHICS 

The integration of computer graphics and text-editing programs 
Donald R. Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 

Use of the graphical kernel system standard for hydrologic applications 
Thomas C. Wood and Alan M. Lumb . . . . . . . . . . . . . . . . . . . . . . . . 47 

Linking digital technology to printing technology for producing publication- 
quality color graphics 

Gregory J. Allord and Kerie J. Hitt . . . . . . . . . . . . . . . . . . , . . . . . . . 69 

V 



Graphics on microcomputers 
R.T. Hanson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 

Application of user-supplied transformations in computer-graphics programs 
StanleyA.Leake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 

CHAPTER E--DATA BASES AND AUTOMATED DATA HANDLING 

A vertical sequence correlator model (VerSeCorr) which is used 
in the recognition of geophysical log shapes 

Merribeth Bruntz and A. Curtis Huffman, Jr. . . . . . . . . . . . . . . . . . . . . 77 

Computer programs for processing model data and results for steady-state 
and transient ground-water models 

Carmen R. Baxter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 

A computer method for estimating ground-water contribution to streamflow 
using hydrograph-separation techniques 

Ronald A. Sloto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 

Statistical and graphical methods used to describe ground-water quality in Illinois 
R.H. Coupe and K.L. Warner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 

Automated data collection and entry techniques for water-use information in Arkansas 
Nancy T. Baker and Terrance W. Holland . . . . . . . . . . . . . . . . . . . . . 123 

Automation of the water-use data base for Minnesota 
Lee C. Trotta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 

Development of a data base to accommodate management of water-resources 
data within a geographic information system (GIS) 

Douglas D. Nebert and Joel Frisch . . . . . . . . . . . . . . . . . . . . . . . . . 139 

The use of optical medium as a means for storage of image and digital data 
Brenda L. Groskinsky and Richard A. Hollway . . . . . . . . . . . . . . . . . . . . . 153 

CHAPTER F--ELECTRONIC PUBLISHING/MANUSCRIPT PREPARATION 

Automating procedures for annual water data report preparation 
MarkL.FarmerandJimE.Monical . . . . . . . . . . . . . . . . . . . . . . . . 157 

32-bit workstations: The trials, tribulations, and triumphs of converting 
to an open-system, tools environment 

David R. Boldt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 

vi 



Evaluation of three electronic report processing systems for preparing 
hydrologic reports of the U.S. Geological Survey, Water Resources Division 

Gloria J. Stiltner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 

Evaluation of a desktop reports processing system for producing earth-science 
technical reports 

Richard A. Hollway and Denise A. Wiltshire . . . . . . . . . . . . . . . . . . . 177 

Use of an electronic page-composition system to prepare camera-ready copy 
of scientific reports 

L.H. Geiger, P.R. Mixson, and S.D. Flagg . . . . . . . . . . . . . . . . . . . . 179 

Evaluation of a user-friendly electronic report processing system for preparation 
of selected reports 

Michael Eberle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 

vii 



CONVERSION FACTORS 

Multiply BY To obtain 

inch (in.) 25.4 millimeter 
inch per day (in/d) 25.4 millimeter per year 
foot (ft) 0.3048 meter 
foot per day (ft/d) 0.3048 meter per day 
foot per mile (ft/mi) 0.1894 
cubic foot per second (f?/s) 

meter per kilometer 
0.02832 cubic meter per second 

mile (mi) 1.609 kilmometer 
square mile (mi”) 2.590 square kilometer 
mile per square mile (mi/mi2) 
gallons per day (gal/d) 
million gallons (Mgal) 
million gallons per day per 

square mile [(Mgal/d)miq 

0.621 
0.003785 

3,785 
1,460 

kilometer per square kilometer 
cubic meter per day 
cubic meter 
cubic meter per day per 

square kilometer 

Temperature in degrees Celsius (“C) may be converted to degrees Fahrenheit (“F) as follows: 

“F = 1.8 x “C +32 

The use of brand, company, or trade names in this report is for indentification purposes only 
and does not constitute endorsement by the U.S. Geological Survey. 

. . . 
VU1 



CHAPTER A--USGS COMPUTER MANAGEMENT/ADMINISTRATION 

1 



MAGNETIC-TAPE BACKUP AND ROUTINE MAINTENANCE PROCEDURES FOR 

A MINICOMPUTER SYSTEM OF THE U.S. GEOLOGICAL SURVEY 

By John E. Owen 

U.S. Geological Survey 

ABSTRACT 

The Arkansas District of the U.S. Geological Survey relies on the 
dependability and efficiency of a minicomputer to process basic data, 
conduct interpretive studies, and to meet the needs of cooperators. 
Hydrologic data, processing programs, and user information on the 
minicomputer disk partitions are maintained in an accurate, logical, and 
secure manner. The procedures used to perform the daily, biweekly, and 
monthly backups as well as the procedures used for pulling, cleaning, and 
testing magnetic tapes are discussed in this paper. The schedules for 
performing magnetic-tape backup operations and routine maintenance 
procedures for the minicomputer also are discussed. A minimum of downtime 
and virtually no loss of data demonstrates the effectiveness of this 
operation in the Arkansas District. 

INTRODUCTION 

The Arkansas District of the U.S. Geological Survey uses the PRIME 
minicomputer and its capability to respond to the needs of the district and 
its cooperators. The district maintains information in an accurate, 
logical, and secure manner with a minimum amount of downtime. This paper 
describes the steps, programs, and files used to perform daily 
(incremental), biweekly, and monthly magnetic-tape backups; the procedures 
used for pulling, cleaning, and testing magnetic tapes; and the schedule for 
performing routine maintenance of the minicomputer. 

Cleanliness and controlled climate are essential to dependability of 
hardware and efficiency of the minicomputer. All tapes and spare disk packs 
are maintained in the controlled environment of the computer room or in an 
offsite, climatically-controlled vault. Limited access is allowed in these 
areas. All cleaning of the controlled area is accomplished by the computer 
operator. 

MAGNETIC-TAPE BACKUP PROCEDURES 

Daily, biweekly, and monthly magnetic-tape backups are performed with 
the PRIMOS utility program (MAGSAV), which is monitored by a magnetic tape 
backup log and controlled by a locally written menu driven Command Procedure 
Language (CPL) program and executed by a Command Input (COMI) file. The 
Command Procedure Language makes use of such "high-level language" features 
as branching and argument transfer to simplify and automate long command 

3 



sequences and to allow decision making at the command level. The COMI file 
controls the flow of commands to the CPL, insuring that logical tape numbers 
will be standardized, providing expedient access in the event that file 
recovery becomes necessary. Index files also are maintained and stored for 
all backup tapes to quickly locate the tape that contains any on-line file 
that is lost or destroyed. The appropriate tape is then used to restore the 
damaged or destroyed file. This practice has virtually eliminated loss of 
data. 

Daily Backup 

Daily backup tapes are maintained for 90 days. When the go-day period 
has been exceeded, the tapes are pulled from the tape rack and the labels 
removed. The tapes are then processed through a tape cleaner before being 
returned to the computer room for use. All tapes are kept on a tape rack in 
a climatically-controlled room. Only tapes that have been in this 
environment for at least 24 hours are used. Tapes are not stored lying flat 
even when waiting to be mailed or shipped to offsite storage. 

Biweekly and Monthly Backup 

Biweekly and monthly backups are performed on Sunday afternoons. This 
time has been selected because it does not interfere with normal operations 
and reduces the amount of down time. These backups, like the daily backups, 
are performed by the MAGSAV utility program, which is controlled by a CPL 
program. Biweekly backups are done on the first day of each pay period. 
The purpose of this date is to capture all data for the prior period. It is 
also easier for an employee to determine what day the computer will be 
unavailable. Also, long running models or other batch jobs have time to 
complete before the biweekly backups are done on Sunday. The biweekly back- 
up is executed with all system processes shut down and only the system is 
running . With priority access rights set for the system, every file is 
backed up. The same backup CPL program that is used for incrementals is 
used for the total backup and an index for each partition is created. 
Because of the large volume of records on disk, all tapes are created at a 
density of 6,250 bits per inch (BPI) which permits a faster completion time 
and minimizes the number of tapes that are used for backup. Because cold 
starts from tape require the command device tape to be written at 1,600 BPI, 
a spare disk pack is stored that can be loaded while maintenance is being 
performed on the damaged device. Biweekly tapes are stored on a tape rack, 
and are maintained for 6 months before being pulled, cleaned, and randomly 
tested before put back in use. These tapes are maintained in date and 
Master File Directory (MFD) order so that a complete set of backup tapes can 
be easily located by the operator if a file or directory restoration is 
necessary. 

Monthly backups are done by the same procedure as the biweekly backups, 
but two copies of each partition are created. One copy stays on a rack 
designated for monthly backup tapes. The other goes to an offsite storage 
area that is under contract and maintained under strict access. The off- 
site tapes are kept in a climatically-controlled vault and can be delivered 
back to the computer room on request. Monthly tapes are held for 1 year 

4 



but, rotation of tapes within the cartridge seal is done every 90 days. 
Higher quality tapes are selected for monthly backups because of the 
importance of these master files. Cleaning and testing after 1 year is 
accomplished before tapes are released for reuse. 

ROUTINE MAINTENANCE PROCEDURES 

Preventive maintenance on the minicomputer is performed by the field 
engineer on a monthly basis. At this time filters are cleaned or replaced 
and logs checked for disk errors. Because maintenance visits require the 
system to be shutdown, they are scheduled during lunch to minimize the 
amount of time that the machine is unavailable to users. Other routine 
maintenance operations are performed by the system operator at hours 
convenient to the user community because most routine maintenance only takes 
a few minutes. After the biweekly backups are completed, another COMI file 
is run which executes the PRIMOS disk maintenance utility program, FIX-DISK, 
which helps insure the integrity and accessibility of all files on the disk. 

The minicomputer has the ability to support a remote systems console. 
When power fluctuations occur at night or on weekends, the computer can be 
cold started, FIX-DISK can be run to repair damaged files, and phantoms that 
run continuously can be started from the remote sys terns console. This 
convenience can save much travel time and also makes it possible to bring 
the system up when it might otherwise be down for several hours. A COMI 
file has been written to perform the FIX-DISK utility and a log is kept so 
that disk maintenance can be performed to minimize human error. Routine 
disk maintenance is completed after each biweekly backup in addition to 
unscheduled maintenance that is performed after power outages and so forth. 

After disk maintenance is performed, the log is checked for any disk 
problem before restarting system phantoms. If a problem exists, the 
operator will determine if FIX-DISK is to be re-run or if the system 
administrator is to be notified of the problem. Once maintenance is 
determined to be complete and all disk files are usable, a COMI file is 
started to bring up system phantoms. 

SUMMARY 

The Arkansas District of the U.S. Geological Survey relies on the 
dependability and efficiency of a minicomputer to process data, do 
interpretive studies, and meet the demands of its cooperators. With the use 
of the minicomputer software packages, locally written CPL programs, and 
COMI files, maintenance and operations of the minicomputer system are 
accomplished efficiently . A minimum of downtime and virtually no loss of 
data demonstrates the effectiveness of this operation in the Arkansas 
District. 



SELECTED REFERENCES 

Alley, S.A., 1984, Magnetic tape user's guide: Natick, Massachusetts, PRIME 
Computer, Inc., chapter 9. 

----- 1984, Operator's guide to system backups: Natick, Massachusetts, 
PRIME Computer, Inc., chapters 1, 5, 6, 8, and 14. 

Forbes, J., Landy, A., and Miles, C., 1986, Operator's guide to system 
commands: hatick, Massachusetts, PRIME Computer Inc., p. 2-40 
2-9, and 2-10. 

Froenlich, A.F., 1982, Managing the data center: Belmont, Californi 
Wadsworth Inc., Lifetime Learning Publications, p. 19-21, 254. 

Gaither, N., 1984, Production and operations management: New York, 
College Publishing, Dryden Press, p. 710-724. 

Gove, G.W., 1984, Operator's guide to file system maintenance: Nati 
Massachusetts, PRIME Computer, Inc., chapter 3. 

2-73, 

aI 

CBS 

ck, 

6 



THE DEVELOPMENT OF DISTRIBUTOR SOFTWARE FOR TRANSMITTING 
DOCUMENTS THROUGH A COMPUTER NETWORK 

by 
Steven J. Brady’ 

ABSTRACT 

The use of electronic mail by the Water Resources Division of the U.S. Geological 
Survey has evolved from informal use into a system designed to replace paper 
correspondence within about 5 years. A critical component in developing such a 
system is distributor software that accomplishes three tasks: (1) automatically 
verifies the recipients’ addresses, (2) uses minimal computer resources, and (3) 
generates minimal network traffic in a distributed environment. 

A distributor is an active process able to recognize certain user activities and to 
respond on them. In the case of electronic mail, the distributor processes messages 
being sent as well as those being received. Thus, the distributor allows any user to 
send electronic messages to any other user. 

A distributor process called MAILMAN, written in FORTRAN 77 programming 
language, has been developed for the Division. This process, which executes in the 
background, is installed on all Division Prime computers, and is part of a larger 
system termed Electronic Documents (EDOC). When executing, the program 
distributes all electronic mail messages and notifies individual recipients of those 
messages. 

Three critical steps were taken in development of the distributor, First, a data 
base of all electronic mail users in the Division, which automatically verifies a 
recipient’s user identification and location, was created. In addition, group identifiers 
were assigned to groups of users at each site who share a common speciality and 
facilitate the sending of messages to thousands of recipients. Second, an algorithm 
was developed to transfer only one copy of a message to a site regardless of the 
number of recipients at that site; this maintains low network overhead. Third, the 
distributor was designed to use a semaphore utility, which assures that the 
distributor process would work only when notified by a user; this minimizes computer 
resource usage by the distributor process, while allowing for extremely fast response 
to the user. 

1 Hydrologist, U.S. Geological Survey, 1400 Independence Road., Rolla, MO 65401 

7 



CHAPTER B--DIS/DISTRIBUTED ENVIRONMENT 



SUPPORTING DIFFERENT TYPES OF TERMINALS 
IN A DISTRIBUTED-INFORMATION ENVIRONMENT 

By J. W. Atwood and S. D. Bartholoma 

ABSTRACT 

The Distributed Information System (DIS) of the U.S. Geological Survey has substantially 
increased computing capabilities in District offices. Program implementation and data entry are 
no longer done by keypunching cards and developing ordered decks of interspersed instruction 
and data cards. Instead, programs are created and run, and data is entered interactively using 
video display terminals (VDT). 

Programs have been written to allow data entry by “filling in the blanks” on a formatted 
VDT screen. Other programs use certain areas of the VDT screen to display messages. This 
has made computer data entry more “user friendly”; it also has caused some major problems. 

Because each District office has been responsible for obtaining its own terminals, different 
types of terminals are used, sometimes in the same District office. In addition, some District 
offices also provide cooperating agencies with access to the computer; these cooperators 
commonly have terminals that differ from those used by the Survey. Problems result when a 
program written specifically for one type of terminal is run on a different type of terminal. In 
many cases, the program does not run on the terminal it was not written for. To compound the 
problem, standard cursor control subroutines do not currently (1988) exist. 

With the distribution of common computer programs to all U.S. Geological Survey District 
offices, it is important to provide programs that are compatible with many types of terminals and 
to provide the ability to easily add new types of terminals as the District offices acquire them. 

A cursor control subroutine library package called the DIS CURsor control package 
(DISCUR) has been developed, which allows any number of terminals to be supported. A set 
of standard subroutines has been developed, and new types of terminals can access all programs 
using DISCUR at the same time, and without re-compilation of the program. The use of 
DISCUR allows the simplest cursor control or complete control of data output and input. This 
report documents the development of the DISCUR control package; the report is not intended 
to be a user’s guide. 

. 

INTRODUCTION 

In late 1982 and early 1983, the U.S. Geological Survey installed a nationwide network of 
about 70 multi-user minicomputers. This network, known as the Distributed Information System 
(DIS), has substantially increased the computing capabilities available at the District-office level. 
Program implementation and data entry are no longer done by keypunching cards and developing 
ordered decks of interspersed instruction and data cards. Instead, programs are created and run, 
and data is entered interactively using video display terminals (VDT). 

11 



The purpose of this report is to document the development of a cursor control package 
designed to assist computer programmers in writing programs that contain “user-friendly” input 
and output functions. This report is not intended to be a user’s guide. 

DESCRIPTION OF PROBLEM 

Programs have been written to allow data entry by “filling in the blanks” on a formatted 
VDT screen. Other programs use certain areas of the VDT screen to display messages. This 
has made computer data entry more “user friendly”, * it also has caused some major problems. 

Because each District office has been responsible for obtaining its own terminals, different 
types of terminals are used, sometimes in the same District office. In addition, some District 
offices also provide cooperating agencies with access to the computer; these cooperators 
commonly have terminals that differ from those used by the Survey. Problems result when a 
program written specifically for one type of terminal is run on a different type of terminal. In 
many cases, the program does not run on the terminal it was not written for; the terminal may 
lock up and no longer accept keyboard commands. An unreadable screen may be displayed or 
a somewhat readable screen may be displayed, but the cursor may not be positioned correctly 
to indicate the required user response. To compound the problem, standard cursor control 
subroutines do not currently (1988) exist. 

With the distribution of common computer programs to all Geological Survey District 
offices, it is important to provide programs that are compatible with many types of terminals and 
to provide the ability to easily add new types of terminals as District offices acquire them. 

DESIRED SOLUTION 

To solve the problems of using different types of terminals, a screen-control subroutine 
library with the following characteristics is needed: 

1. The library needs to support as many types of terminals as possible. 

2. Screen-control features need to be accessed by a set of standard subroutines. 
Programs need to be independent of the type of terminal used, with the exception of 
optionally requiring cursor-control and screen-control capabilities. 

3. Programs using the screen-control library should not have to be re-compiled or 
re-loaded when a terminal is modified or a different type of terminal is added to the 
system. 

4. The screen-control library needs to be installed as a stand-alone library at the 
operating-system level. It needs to be available to all programmers; it also needs to 
be compatible with all other programs in the computer, but not be an integral part 
of these programs. 

12 



5. The library needs to record the type of terminal used by a particular user, so that the 
user does not have to specify the terminal type every time the library is invoked. 

EXISTING PROGRAMS 

Several programs for terminal control sequences have been developed and used by U.S. 
Geological Survey and others. Some of them are described below. 

Hard-Coded Control Seauences 

Many applications in the DIS have been implemented using hard-coded, terminal control 
sequences. These applications, written by various programmers within the Geological Survey, 
support terminals using the American National Standards Institute (ANSI) terminal control 
sequences. The Administrative and Financial data Management System (AFIMS) program uses 
this technique. Programs with hard-coded ANSI sequences can only be used on ANSI terminals 
such as the Digital Equipment VT100 and its equivalents (TAB, Lear-Seigler ADM36, Graphon, 
Tektronix, and others). 

SCREEN Program 

The SCREEN program was written in the New Jersey District office of the Geological 
Survey in early 1980 by Stephen M. Crutchfield, a student from Drexel University. This 
program supported several different terminal types through the inclusion of a separate subroutine 
for each type of terminal. Identification of the specific type of terminal to the program was 
through a variable in a Fortran common block. 

Adding a new type of terminal necessitated writing a new driver subroutine for that type of 
terminal and adding a command to invoke the new subroutine in the SCREEN subroutine. The 
new driver subroutine and the SCREEN subroutine then had to be re-compiled, and all programs 
that invoked SCREEN had to be reloaded to make the new type of terminal available to users. 

SCREEN was used in the Automatic Data Recorder (ADR) program that was installed in 
1983 by the Geological Survey as an interim records-processing package. Re-named SSCRN, 
it was later used in the original version of the Automatic DAta Processing System (ADAPS), 
which was released in 1986. 

CURCON Program 

The CURCON subroutine library was written by John W. Atwood while working for the 
University of Utah Research Institute/Earth Science Laboratory (UURI). Programming for the 
first revision of CURCON was finished in January 1981. Like SCREEN, this library supported 
several types of terminals by including a separate subroutine for each type of terminal. The type 
of terminal was specified by calling a terminal-selection subroutine that identified the selected 
type of terminal to the program through a variable in a Fortran common block. 

13 



Like SCREEN, adding a new type of terminal meant writing a subroutine containing the 
necessary control sequences and placing commands to invoke the new subroutine in the 
initialization and driver subroutines. The CURCON subroutines then had to be re-compiled, and 
all of the programs using CURCON had to be re-loaded. 

CURCON was used in several programs written at UURI. Later, CURCON was used in 
a screen entry program for creating data entry files for the Ground-Water Site Inventory (GWSI) 
data base on the Survey’s mainframe computer in Reston, Virginia. CURCON was also used 
in the SOFTware Exchange (SOFTEX) program and in the GWSI and Quality of Water (QW) 
parts of the National Water Information System (NWIS). 

TERMINALID ProPram 

As part of the ADAPS system, the TERMINALID program was developed by Joseph 
Riggsbee in the North Carolina District of the Geological Survey, with the help of Scott D. 
Bartholoma, Utah District office. This program maintained a data base of type of terminals 
keyed by user number. ADAPS applications could get a user’s type of terminal without having 
to query the user every time the program was used. The program was later extended to include 
type of terminals for other, non-Survey software packages such as INFO, EMACS, and 
TELL-A-GRAF. This program was embedded in the NWIS software structure and was not 
readily available for non-NWIS applications. 

IMPLEMENTED SOLUTION 

To remedy the shortcomings of the existing cursor-control programs, the DISCUR 
subroutine library package was written by Scott D. Bartholoma (Utah District office of the 
Geological Survey) and John W. Atwood (North Dakota District office). The DISCUR library 
provides a set of standard cursor-control functions that can be used in screen-entry and tabling 
programs. Support for new terminals can be added by using a definition builder to create a new 
terminal definition and by adding a one-line description of the terminal to a sequential file. Any 
program that uses the DISCUR library for cursor control will work properly on the newly added 
terminal without re-compilation of the program. 

The DISCUR library consists of three subpackages. The first subpackage, called 
TERMINALID, keeps track of the user’s type of terminal. It consists of a set of 
operating-system-level commands and a set of user-invokable subroutines to display, select, set, 
and retrieve terminal-type information. 

The second subpackage, referred to as the C-SUBS subroutines, is used for simple cursor 
control only. The names of these subroutines begin with “C-“, and each subroutine performs 
a single function. This set of subroutines may be the best choice if a user wishes to do only 
simple cursor control because there is no additional storage of cursor position or screen image. 

The third subpackage, called CURCON, provides terminal cursor control as well as 
screen-entry and field-editing capabilities. The cursor position as well as a memory image of 

14 



the current screen are maintained by this group of subroutines. This set of subroutines can be 
used when complete control of the terminal screen is desired. 

Cursor control in DISCUR is accomplished through the use of definition files. When a 
program using DISCUR is used, a subroutine is invoked that loads the control-code sequences 
into the package from the definition file of the specified terminal. 

Installation of a new terminal in the DISCUR cursor-control package is relatively easy, 
requiring only the creation of a definition file and the addition of a line to a sequential tile 
containing a list of available types of terminals. No re-compilation is required. 

Defining New TvDes of Terminals 

A definition file is created with the definition-building program (BLDDEF), which creates 
an American Standard Code for Information Interchange (ASCII) definition file, and compiles 
the ASCII file into an unformatted, binary, direct-access file containing the control-code 
sequences to perform individual cursor movements and functions. The user’s manual for the 
terminal usually contains a list of the control-code sequences needed for entry into the BLDDEF 
program. 

All ASCII definition files are given the name of the terminal suffixed with ” .SRC” . An 
ASCII definition file is created by the BLDDEF program whenever the specified file name does 
not exist. After the ASCII definition file has been created using BLDDEF, the file can be 
modified using any text editor and then re-compiled by running BLDDEF again. The resulting 
compiled file is given the name of the terminal suffixed with ” .CFG”. 

The subroutines C-WIT and SELTER are used to load the binary definition file into the 
control-code storage area. The control-code storage area is a section of data storage, internal 
to the DISCUR package, that contains all the control-code sequences loaded from the binary 
definition file. The control-code storage area provides the corresponding driver subroutines with 
the control-code sequences for the specified terminal. C-INIT is for use with the C-SUB group 
of subroutines, and SELTER is for use with the CURCON group of subroutines. 

TERMINALID Subpackape 

Programs that use the DISCUR library, as well as many other programs on the Survey’s 
minicomputers, use cursor control and require the type of terminal to be specified. It is 
convenient for users not to have to specify the type of terminal every time a program using 
cursor control is invoked. The TERMINALID subpackage provides a mechanism for the user 
to specify the type of terminal being used, and the information is stored for later use. 

The TERMINALID package consists of two data files, three system-level commands, some 
utility programs, and three user-invokable subroutines. A’ sequential file, named 
DISTRICT-TERMINALS, contains an entry for each type of terminal available and, in each 
entry, some descriptive information and the terminal identifiers to be specified for DISCUR and 

15 



for several other proprietary programs. This is an ASCII file and may be edited to add new 
types of terminals and to indicate types of terminals that are available at the local computer site. 

A direct-access file, named USER-TERMINALS, contains each user’s terminal information 
filed by user number. A user on a hard-wired terminal line (as most users in the Geological 
Survey are) can specify the type of terminal once and change it only if another type of terminal 
is attached to the line. A command suitable for inclusion in a login-time command file to set 
the type of terminal is provided for users of a network or port-sharing device where a pool of 
user numbers is shared. 

System-Level Commands 

Three system-level commands are associated with the TERMINALID package: 

1. The TERMNL command is used to identify the type of the user’s terminal for 
applications using the DISCUR cursor-control package and for other applications 
where the user’s type of terminal is needed. 

2. 

3. 

The SHOWTERM command displays the currently selected type of terminal. 

The TERMTYPE command, which also can be invoked as a command function, 
extracts the type of terminal for DISCUR or any one of several other proprietary 
software packages, and returns it for later use. 

Utility Programs 

When it becomes necessary to modify some of the information in the 
DISTRICT-TERMINALS file, the modifications are not automatically forwarded to users who 
have selected the modified type of terminal. A utility program to forward the new information 
to the USER-TERMINALS file, named RELOAD-TERM, has been provided. 

Subroutines 

Three subroutines are provided as part of the TERMINALID subpackage that duplicate the 
functions of the three commands described earlier. The subroutines are: 

C-SETT - Sets the type of terminal for a user; 
C-TMSG - Displays the user’s current type of terminal; and 
C-ITYP - Retrieves terminal information. 

16 



C SUBS Subpackage 

The C-SUBS subpackage consists of a set of subroutines used to move the cursor, erase all 
or part of the terminal screen, set character and line attributes, and other miscellaneous 
terminal-control functions. These subroutines retrieve the control sequences for the various 
functions from the control-code storage area that has been loaded by the initialization subroutine. 
The contents of the control-code storage area are loaded from a binary file that is created by the 
DISCUR utility “BLDDEF”. If a function is not supported by the user’s terminal, the 
sub.routines return without taking any action. Following is a list of the subroutines available in 
the C-SUBS subpackage, grouped by function. 

Initialization is controlled by the subroutine C-INIT. It retrieves the DISCUR driver name 
from the TERMINALID package and loads cursor-control information. The programmer may 
specify that only terminals that support cursor control may be used. If the selected terminal does 
not support cursor control, an appropriate code is returned. This subroutine needs to be used 
before any other C-SUBS cursor-control subroutines are used. 

These subroutines control cursor movement: 
CJP - Moves cursor up; 
C-DOWN - Moves cursor down; 
C-LEFT - Moves cursor left; 
C-RGHT - Moves cursor right; 
C-POSN - Moves cursor to a specified location; and 
C-HOME - Moves cursor to “home” position (top left comer). 

These subroutines control screen erasure: 
C-EBOL - Clears from beginning of line; 
C-EEOL - Clears to end of line; 
C-ELIN - Clears entire line; 
C-EBOS - Clears from beginning of screen; 
C-EEOS - Clears to end of screen; 
C-EALL - Clears entire screen, cursor is not moved;.,and 
c-CLS - Clears entire screen and moves cursor to “home” position. 

These subroutines control screen attributes: 
C-DB - Bold; 
C-DBF - Bold, flashing; 
C-DBFR - Bold, flashing, reversed; 
C-DBR - Bold, reversed; 
C-DBU - Bold, underlined; 
C-DBUF - Bold, underlined, flashing; 
C-DBUR - Bold, underlined, reversed; 
C-DU - Underlined; 
C-DUF - Underlined, flashing; 
C-DUFR - Underlined, flashing, reversed; 
C-DUR - Underlined, reversed; 
C-DF - Flashing; 

17 



C-DFR - Flashing, reversed; 
C-DR - Reversed; 
C-DALL - Bold, underlined, flashing, reversed; and 
C-DOFF - All attributes off, normal characters. 

These subroutines control line attributes: 
C-LNDT - Double width, double height, top one-half; 
C-LNDB - Double width, double height, bottom one-half; 
C-LNDW - Double width, single height; and 
C-LNOF - Attributes off - Single width, single height. 

These subroutines are used for miscellaneous functions: 
C-LOCK - Lock lines; 
C-SCRL - Set scrolling region; 
C-NARO - Set to narrow screen; 
C-WIDE - Set to wide screen; 
C-AXON - Auxiliary (printer) port on; 
C-AXOF - Auxiliary (printer) port off; 
C-BELL - Ring terminal bell; and 
C-RSET - Perform master reset. 

CURCON Suboackage 

CURCON is the primary subroutine within the CURCON subpackage. CURCON is used 
to perform all of the cursor-positioning functions. Other subroutines are used to: load the 
control-code storage area with the proper cursor-control sequence codes (SELTER); select an 
option (LISOPT); enter data (REDSTR, REDTMP, REDNUM, REDDAT, REDTIM, 
REDSCR); display an error message (MESQUR); and access individual values within the 
control-code storage area (RTRVPR, STROPR). 

For terminals that support only cursor positioning, CURCON can emulate most of the other 
clearing and scrolling functions. Emulation of the clearing and scrolling functions requires strict 
control of the cursor position. This is why the cursor position and screen image are stored when 
using CURCON. The mixing of other screen control subroutines with CURCON, although 
possible, is not recommended because they modify the screen image and move the cursor 
without updating the stored screen image and cursor position variables. Fortran “read” and 
“write” statements used to perform terminal input and output should also be avoided when using 
CURCON, for the same reason. All output to the screen needs to be through the CURCON, 
MESQUR, and LISOPT subroutines. All entry from the terminal needs to be through one or 
more of the REDxxx subroutines. Otherwise, the program will not work properly on terminals 
that require the emulation of certain functions. 

The subroutine SELTER needs to be used to initialize the control-code storage area before 
any of the other CURCON subroutines are used. SELTER has no arguments. The type of the 
user’s terminal is read from a system file that first needs to be set using the TERMNL command 
at the operating-system level. If the type of the user’s terminal is undefined, SELTER will 

18 



display a list of the available type of terminals and prompt the user to select one. The list of 
terminals given is dependent both on the DISTRICT-TERMINALS file and on whether the user 
is a local or remote user. If the user is on a hard-wired line, only the terminals that have been 
defined for the local office are listed. If the user is a remote user, the entire list of available 
terminals is displayed. 

CURCON is used to perform all cursor positioning and attribute setting. Areas within the 
screen can be blanked, filled, or edited. A s,crolling region can be set in both the vertical and 
horizontal directions. Messages are displayed in normal, bold, underlined, reverse video, and 
double-sized characters if the terminal supports such attributes. 

LISOPT is used to display an option list and accept a decision on the desired option. 

MESQUR is used to display an optional message at the bottom of the screen and pause for 
permission to continue. If the user’s program detects an error, a message can be displayed using 
MESQUR. The message is displayed on the last line, and a prompt to continue is displayed on 
the line above the message. Special messages and prompts can be displayed in the same 
manner. MESQUR also displays a two-line command description at the bottom of the screen. 
The description lines are displayed on the same two lines used to display messages, and replace 
the messages after exiting the MESQUR subroutine. If desired, the command description lines 
can be displayed initially or re-stored after a screen clear by using a special command to 
MESQUR. The command description lines contain a visual reminder of a few of the 
field-editing commands available to the user. These field-editing commands are used by the 
data-entry subroutines, as well as LISOPT and MESQUR, to perform within-field editing. 

The data-entry subroutines REDSTR, REDTMP, REDNUM, REDDAT, REDTIM, and 
REDSCR are used for entering data of various types. All data needs to be entered using these 
subroutines so that the program can always maintain a record of the cursor location. With the 
exception of REDSCR, the data-entry subroutines allow within-field editing. REDSCR is a 
special subroutine that reads a field of specified length directly from the stored screen image. 
All entered data is in character-string form. If the entered data is a numerical value, it should 
be read first by REDNUM, and then an internal read (from a character variable, instead of from 
a file) should be performed on the character string to retrieve the required numeric value. The 
field-editing codes that define field positioning and edit modes are passed to the invoked 
subroutine for proper execution. This allows the invoked subroutine to position to the proper 
field, change to edit or entry mode, store the data, or abort. 

The last subroutines, RTRVPR and STORPR, are used to access the individual values in the 
DISCUR control-code storage area. Care needs to be taken in using these subroutines, as 
erroneous modification of the DISCUR system variables can have unexpected results. These 
subroutines are provided so that programmers can access the values contained in the control-code 
storage area. These subroutines give direct access to the control sequences as well as the stored 
screen. 

19 



CONCLUSIONS 

With the increasing use of VDT terminals for entry of data to a computer, there is a need 
for the use of standard terminal-control subroutines. The need for supporting many types of 
terminals is great. The DISCUR control package has been developed to fit these needs. 
DISCUR provides a complete set of terminal control features and allows easy addition of any 
number of types of terminals. Addition of new terminals to the system is independent of any 
program using the DISCUR package. To use a newly added type of terminal, the user need only 
select the new terminal before running programs containing commands to DISCUR. DISCUR 
is a stand-alone package that can be used in any program that performs cursor control. 

20 



CHAPTER C--GIS APPLICATIONS IN USGS 

21 



Displaying Data from the National Water Data Exchange 
by Use of a Geographical Information System 

Bruce Parks 
U.S. Geological Survey 

Office of Water Data Coordination 
Reston, Virginia 

ABSTRACT 

The capability exists to plot the location of the water-data-collection 
sites for each State by using a geographic information system program with 
appropriate background files. Information from the Master Water Data Index 
of the National Water Data Exchange, a data base maintained at the 
U.S. Geological Survey’s headquarters office in Reston, Virginia, has been 
transferred into a series of digital files in a geographical information 
system that represents features on maps. “Key files” and special commands 
allow rapid selection of records by type of data collected, collecting 
agency, frequency of data collection, or any combination of selection 
criteria. The relation and structure of the files and practical 
applications in which they could be used are examined. 

BACKGROUND 

The Office of Management and Budget Circular A-67 gives the Department 
of the Interior the responsibility to maintain a catalog of water-data 
information on a national basis. The National Water Data Exchange (NAWDEX) 
is an interagency program residing in the U.S. Geological Survey to 
facilitate the exchange of water data and to promote the standardization of 
procedures for handling water data. Federal, State, local government 
organizations, academic institutions, and private organizations that collect 
and use water data are participants in the NAWDEX program. NAWDEX maintains 
a Master Water Data Index (MWDI), which is a computerized index of available 
water data. This index resides on an Amdahl mainframe computer at the 
Geological Survey Headquarters office at Reston, Virginia. 

Requests for information from NAWDEX may be made through the 76 NAWDEX 
Assistance Centers located throughout the country. Responses to requests 
are usually given in tabular form, although limited capability exists for 
showing the area1 distribution of sites. For the novice user of NAWDEX, 
retrievals can be time consuming and may require resubmittal to get the 
exact information or format required. The purpose of this paper is to 
describe a scheme for transferring data from NAWDEX to a geographical 
information system that can be used interactively to display the information 
on maps, and to identify some applications for using the system. 

23 



Water-resources managers and data users need to be able to readily see 
the data that are available for their area of interest. This is best 
accomplished by using a computerized information management system that 
allows the display of information on maps and modification of the 
information being displayed. ARC/INFO, a Geographical Information System 
(GIS) developed by the Environmental Systems Research Institute of Redlands, 
California, is a management tool that can be used to organize, manipulate, 
and graphically display the geographic data available in the MWDI. 

APPROACH 

To display the location of sites listed in the MWDI, data files need to 
be developed that contain the information in the MWDI and reside in the data 
base structure of a GIS. Software has been developed that will read all 
information in the MWDI for a set of sites and write the information to 
tape. The tape is then loaded onto a Prime minicomputer where a program 
edits and formats the file, builds a data base, and creates an ARC/INFO 
coverage, which is a digital analog of a single map sheet stored in a suite 
of files. INFO is a relational data base software program developed by 
HENCO Software, Inc., Waltham, Massachusetts, which is used to build the 
data base. ARCPLOT, a subsystem of ARC/INFO, is then used to display the 
location of the sites or subsets of sites along with other geographical data 
showing State and county boundaries, hydrologic units, river locations, and 
other information, that has been drawn from other data files. The subsets 
can be controlled by selecting a range of values for any of the parameters 
or items listed for the sites. 

Structure of the Master Water Data Index 

The MWDI data base on a mainframe computer is maintained through a data 
base management system called SYSTEM 2000. The data in the SYSTEM 2000 data 
base are organized into a hierarchical structure as shown in figure 1. The 
MWDI contains the following general categories of information: 

Station Identifiers 

Unique identifiers (site number, agency number, NAWDEX number) 
Operating organization 
Geographical identifiers (country, State, county, hydrologic unit) 
Type of site (stream, well, lake, spring, estuary) 
Physical identifiers (drainage area, basin descriptor) 
Station status (active, inactive) 
Supplementary data available 

Type of water data collected 

Surface water 
Ground water 
Water quality 
Meteorological 

24 



Attributes of water-data collected 

Period of record 
Record continuity 
Data parameters collected 
Frequency of data collection 
Data storage media 
Purpose of activity 
Status of activity 

MASTER WATER DATA INDEX 

WATER-DATA SITE 

IDENTIFIERS AND 
DESCRIPTORS 

I 

I I I I I I 

I 
SURFACE-WATER GROUND-WATER WATER-QUALITY METEOROLOGICAL 

DATA DATA DATA DATA 

I I -~ -- -- 
BIOLOGICAL I I PHYSICAL I I SEDIMENT I I 

I -- 
CHEMICAL 

Figure Cl. Structure of the Master Water Data Index’s SYSTEM 2000 data base. 

Transfer of Data from the National Water Data Exchange to the Prime 

The MWDI resides on the Amdahl computer at the Geological Survey in 
Reston, Virginia. Job Control Language (JCL), a computer software program, 
was used to make retrievals by State or territory for all available data from 
each site and to write the information to tape. Prime’s magnetic tape utility 
program, MAGNET, was used to read the file into the Prime environment and the 
GET COPY command in INFO was used to transfer the data into an INFO file. An 
ARC/INFO coverage was created by using the GENERATE command in ARC/INFO with 
the latitudes and longitudes from the MWDI data, and by projecting the 
coverage into Albers equal-area coordinates. 

25 



The MWDI contains more than 200 parameters for each of the 460,000 sites 
listed for the United States. The data were categorized by State to keep the 
files in a more convenient size. To maintain continuity between the original 
data base and the data base to be created for the GIS environment, a parallel 
system was developed in ARC/INFO. A directory, or suite of files, was created 
for each State. The component names used in the SYSTEM 2000 data base have 
been used as item names in the ARC/INFO data base and the groups of components 
used in the SYSTEM 2000 data base have been organized as separate files in the 
ARC/INFO data base. The suite of ARC/INFO files that correspond to the 
structure shown in figure Cl are given in table Cl. Directories that contain 
two sub-directories -- named INFO and LOC -- were established for each 
State. The INFO directory contains the normal ARC/INFO files plus the 
separate data files for the types of data available. The LOC directory is the 
ARC/INFO coverage containing the files that define the attributes or 
boundaries of points, lines, and polygons in the coverages. Both directories 
are accessed through the ARC/INFO software. 

Application 

To display the data, ARCPLOT is used with the new command KEYSELECT, 
described by Lanfear and Hitt (1988). Key files and lookup tables can be 
created by using common items such as SW-KEY, GW-KEY, and so forth, found in 
the LOC.PAT file and KEY-LOC which is found in the other files (table 1). 
Using the searching techniques described by Lanfear and Hitt (1988), the user 
can select a group of records based on availability, non-availability, or 
magnitude of any of the parameters in any of the INFO files in a relatively 
short period of time. 

There are a number of coverages in Geological Survey files that can be 
used as base maps to display the states, counties, rivers, water bodies, and 
hydrologic units. The sites selected from the NAWDEX files can be overlayed 
on these maps to show the spatial distribution of the sites. Because there 
are codes in the NAWDEX files that list the State, county, hydrologic unit, 
and names for the sites, discrepancies in the data base can be detected by 
overlaying sites listed for a certain area on a polygon outlining that area, 
whether by State, county, hydrologic unit or combination. 

SUMMARY 

An index of water-data information for the United States currently 
resides in the U.S. Geological Survey’s National Water Data Exchange and is 
maintained on an Amdahl computer at the Geological Survey’s headquarters in 
Reston, Virginia. To have the information readily available for use in a GIS 
environment, the data were transferred to a Prime computer, copied into INFO 
files, and developed into ARC/INFO coverages for use with the ARCPLOT 
subroutines. The files were set up so that keyfiles and lookup tables could 
be used to decrease the time required for selecting and reselecting data. 
Because the individual files can be fairly large, the KEYSELECT command is 
used to decrease the time for selecting the desired group of records. 

26 



TABLE Cl. List of items in each file in INFO directory 

FILE NAME: LOC.PAT 

AREA 
PERIMETER 
LOC# 
LOC-ID 
NAWDEX# 
NAWDEX-ID 
NAWDEX-AGCY 
ACCY STA NO 
STATTON'AME 
NON US-COUNTRY 
STATE 
COUNTY 
HYDROL-UNIT 
CONG DIST 
SITE-TYPE 
BASIN DESCRP 
WDSD-GFC-CODE 
DRAINAGE.AREA 
NC-AREA 
LAST UPDATE 
STATE COUNTY 
PRIMARY USE 
WRD ACCT 
DOWkTREAM-ORDER 
OTHER-DATA 
SW-ACTIVE 
SW-KEY * 
GW ACTIVE 
GW-KEY 
QW-ACTIVE 
QW-KEY 
BIG ACTIVE 
BIO-KEY 
PHY-ACTIVE 
PHY-KEY 
SED-ACTIVE 
SED-KEY 
CHM-ACTIVE 
CHM-KEY 
MET-ACTIVE 
MET-KEY 
MISGINFO-KEY 

FILE NAME: SW DATA FILE NAME: GW DATA 

NAWDEX# 
SW-BEGIN-YR 
SW-END-YR 
SW-INTERRUPTED 
SW-OWDC-NO 
SW-OWDC-SEQ 
COMPLETE 
PEAK-STAGE 
LOW-STAGE 
STAGE-MED 
COMPLETE-FLOW 
PEAK-FLOW 
LOW-FLOW 
MISC-FLOW-MEAS 
FLOW-MED 
VOLUME 
VOLUME-CHANGE 
VOLUME-MED 
SW-UNIT-FLOW 
SW UNIT STAGE 
SW-UNIT-VOLUME 
SW-RECMD MTHDS 
SW-OTHER- 
SW-TELEMETRY 
SW-LST UPDATE 
SW-PURPOSE 
SW-RECORDER TYPE 
SW-RECORDERIFREQ 
SW-PN CODE 
SW-MODIFIERS 
KEY-LOC ** 

NAWDEX# 
GW-BEGIN-YR 
GW END YR 
GW-INTERRUPTED 
GW-OWDC NO 
PRTN AQUIFER 
AQUIFER TYPE 
LEVEL F'iiEQ 
LEVEL-MED 
DISCHliG FREQ 
DISCHRG-MED 
SUBSIDE-FREQ 
SUBSIDEIMED 
DEPTH-OF-WELL 
GW-RECMD-MTHDS 
GW-OTHER 
MAJOR-VAR 
GW-TELEMETRY 
GW LST UPDATE 
GW-PURPOSE 
GW-RECORDER TYPE 
GW-RECORDERIFREQ 
GW-PN CODE 
GW-MODIFIERS 
KEY-LOC ** 

+ Physical record number of corresponding record in the SW DATA file, for 
use with INFO's RELATE...LINK command. Other KEYS are similar. Not all 
stations in the LOC.PAT file have corresponding records in the QW-DATA, 
GW-DATA, or similar files; KEYS for these records are set to ZERO. 

** Physical record number of corresponding record in the LOC.PAT file. 

27 



TABLE Cl. List of items in each file in INFO directory -- Continued 

FILE NAME: QW DATA 

NAWDEX# 
QW-BEGIN-YR 
QW-END-YR 
QW-INTERRUPTED 
QW-OWDC-NO 
QW-OWDC-SEC 
QW-RECMD-MTHDS 
QW-TELEMETRY 
QW-LST-UPDATE 
QW-PURPOSE 
QW-RECORDER-TYPE 
QW-RECORDER-FREQ 
QW-PN-CODE 
STORET-POINTER 
QW-MODIFIERS 
KEY-LOC ** 

FILE NAME: CHM DATA - 

NAWDEXt 
SOLIDS-DIS 
MAJOR-IONS 
HARDNESS 
SILICA 
PHOSPHORUS 
PHOS-SPECIES 
NITROGEN 
N SPECIES 
DETERGENTS 
OMI-CONSTITS 
RADIOACTIVITY 
RCHM-SPECIES 
CARBON 
ORG-GROUPS 
PEST SPECIES 
OTH GRG SPECIES 
BIOCHEMIOX-DMND 
CHEM-OX-DMND 
DISSOLVED-OX 
OTHER-DIS-GAS 
CHEM-RECMD-MTHDS 
CHM-BEGIN-YR 
CHM-END-YR 
CHM LST UPDATE 
CHEMICAL MED 
CHM MODIFIERS 
KEY-LOC ** 

FILE NAME: BIO DATA 

NAWDEX# 
ENTERIC-BACT 
NATIVE BACT 
PHYTOPLANKTON 
ZOOPLANKTON 
PERIPHYTON 
MACROPHYTON 
MICROINVERTS 
MACROINVERTS 
VERTEBRATES 
FUNGI 
VIRUSES 
BIO-RECMD-MTHDS 
BIO BEGIN YR 
BIO-END YE 
BIO-LST-UPDATE 
BIOLOGIC MED 
PRIMARY PRDCTVTY 
SCENDARY PRDCTV 
CHEMOSYN?;HETIC A 
BIOSTIMULATORY;T 
TOXICITY-TEST 
OTHER-BIOASSAY-T 
CHM TISSUE-ANALY 
HISTOPATH-ANALYS 
OTHER-TISSUE-ANA 
BIO-MODIFIERS 
KEY-LOC ** 

*% Physical record number of corresponding record in LOC.PAT file. 

28 



TABLE Cl. List of items in each file in INFO directory -- Continued 

FILE NAME: PHY-DATA 

NAWDEXI 
TEMPERATURE 
SPEC-CONDUCT 
TURBIDITY 
COLOR 
ODOR 
PH 
SUSPD-SOLIDS 
PHY-RECMD-MTHDS 
PHY-BEGIN-YR 
PHY-END-YR 
PHY LST UPDATE 
PHYSICA"MED 
PHY-MODIFIER 
KEY-LOC ** 

FILE NAME: SED DATA 

NAWDEXI 
BED LOAD 
CNCNTRIN SUS 
CNCNTRIN-TOT 
PART-SIZISUS 
PART-SIZ-BED 
SED DIS SUS 
SED-DIS-TOT 
SED-RECMD MTHDS 
SED-BEGIN-YR 
SED-END Y?T 
SED-LST-UPDATE 
SEDTMENT MED 
SED MODIFIERS 
KEY-LOC ** 

FILE NAME: MET-DATA 

NAWDEX# 
MET BEGIN YR 
MET-END Yil 
MET-INTERRUPTED 
MET-RAINFALL 
MET-UNIT RAINFAL 
MET-AIR TEMPERAT 
MET-RSVDl 
MET-WIND VELOCIT 
MET-RSVD? 
MET-RSVD3 
MET-RECMD MTHDS 
MET-OTHER- 
MET-TELEMETRY 
MET-LST UPDATE 
MET-MEDIA 
MET-RECORDER TYP 
MET-RECORDERIFRE 
MET-PN CODE 
MET-MODIFIERS 
KEY-LOC ** 

** Physical record number of corresponding record in LOC.PAT file. 

REFERENCES 

Lanfear, Kenneth J., and Hitt, Kerie J., 1988, Efficient operations on large 
geographic information system coverages: in Proceedings of the Eighth 
Annual ESRI User Conference, March 21-25,-?988, Palm Springs, California, 
[Redlands, California] Environmental Systems Research Institute, 12 p. 

29 



USING A GEOGRAPHIC INFORMATION SYSTEM TO 
DETERMINE PHYSICAL BASIN CHARACTERISTICS FOR 

USE IN FLOOD-FREQUENCY EQUATIONS 

James J. Majure and P.J. Soenksen 

ABSTRACT 

A set of computerprogmns, named 
Basinsoft, was developed to use digital 
cartographic data to compute basin 
characteristics that are hypothesized to be 
related tom. The programs work in 
conjunction with a proprietary geographic 
information system Three digital 
cartographic data sets (coverages) of 
drainage basin boundaries, streams, and 
selected topographic contours are used by 
Basinsoft to calculate 16 basin 
characteristics: total drainage area, 
noncontributing drainage area, 
contributing drainage area, main stream 
length, basin length channel slope, basin 
slope, basin width shapefmtor, total 
stream lengtk drainage density, basin 
relief, ruggedness number, basin 
perimeter, relative relief, and drainage 
ji-equency. Basinsoft also plots the three 
cover-ages along with selected basin 
characteristics. The results produced by 
Basinsoft may be directly usefur to 
hydrographic and geomorphologic studies, 
but its ultimate value will be to provide 
basincharacteristics that can be used 
to improve Jood-discharge andjlood- 

j+quency predictions. 

INTRODUCTION 

Determining the magnitude and 
frequency of floods at any site is an 
important step in the economical planning 
and safe design of bridges, culverts, 

levees, and retention structures, and is 
essential for the management of flood 
plains. At &aging stations where flood data 
have been collected for a number of years, 
these determinations can be easy to make. 
However, the great majority of basins in 
Iowa have no flood data, and methods that 
transfer data from other sites need to be 
used. 

Previous investigations by the U.S. 
Geological Survey on the magnitude and 
frequency of floods in Iowa were prepared 
by Schwab (1953, 1966) and Lara (1973, 
1987). The methods illustrated in these 
reports used data that were regionalized 
according to general basin types that were 
assumed to produce similar floods. 
Equations relating one or more 
measurable basin characteristic (drainage 
area, channel slope, mean annual 
precipitation) to the various flood- 
frequency characteristics were determined 
from available flood data within each 
region. Flood characteristics at ungaged 
sites were then estimated by using the 
appropriate regional equation and 
measured basin characteristics at the 
ungaged site. 

The physical characteristics of a 
basin (size. ruggedness, drainage pattern, 
shape. soils. and so forth) largely control 
flood characteristics in that basin. 
However, limited cartographic data and 
the tedious procedures required to 
compute many physical characteristics of 
a basin, have prevented researchers from 

31 



using all but a few of these characteristics 
in equations that estimate flood 
frequency. The composite effects of the 
remaining characteristics were dealt with 
in a general way through the use of large 
geographic regions with generally similar 
characteristics. However, there are 
sign&ant limitations to this approach. 
Because the defined regions are not 
entirely homogeneous, and physical 
characteristics do not change abruptly at 
regional borders, individual basins, 
especially small basins, can be of a 
different type than that of the region they 
are in. In such cases the normal regional 
equations are not applicable, and there is 
no quantitative way of determining which, 
if any, of the other regional equations are 
applicable. 

A more direct approach is to 
incorporate several basin characteristics 
into the equations so that flood 
characteristics can be directly related to 
quantitative measurements. Implicit to 
this approach is the capability to compute 
a variety of physical basin characteristics 
for a large number of basins where flood 
data have been collected. so the equations 
can be developed, and flood 
characteristics are desired. The advent of 
digitized cartographic data and geographic 
information systems (GIS) makes such 
large-scale computations not only 
possible, but also fast and accurate. This 
report presents the results of an 
investigation that used aGIS to determine 
physical basin characteristics for use in 
flood-frequency equations. 

DETERMINING PHYSICAL 
BASIN CHARACTERISTICS 

USING A GEOGRAPHIC 
INFORMATION SYSTEM 

Concents 

A set of computer programs, named 

Basinsoft, was developed to use digital 
cartographic data to compute basin 
characteristics that are hypothesized to be 
related to floods. This is accomplished by 
creating a representation of a drainage 
basin on a computer using the ARC/ 
INFO 1 /geographic information system. 
Once the ARC/INFO representation of the 
drainage basin is entered into the 
computer, the information maintained by 
ARC/INFO and the computational 
capabilities it provides make it possible to 
calculate many basin characteristics. 

The first step in creating a 
representation of a drainage basin is to 
define those characteristics of a basin that 
are to be determined. Because the number 
of basin characteristics that affect floods 
is large, it is not practical to determine all 
characteristics. For Basinsoft, the most 
important characteristics were chosen. 
These characteristics require that the 
contributing and noncontributing 
drainage areas, the streams, and the 
topography of a basin be represented. 
After determming which aspects of a basin 
are to be represented, how to best 
represent these aspects in the GIS needs 
to be determined. Geographic features are 
represented in ARC/INFO as polygons, 
lines, or points. A complete basin in 
Basinsoft is represented by three ARC/ 
INFO coverages: a polygon coverage for the 
drainage area, a line coverage for the 
streams, and a line coverage for the 
Wm-why. 

The concept of having a complete 
basin in Basinsoft is important because 
when a co mmand is given and the 
specifkd basin is not complete, Basinsoft 
will display an error message and abort. 
Specifically, a complete basin named 
&asin>. would consist of: a drainage area 
coverage. &asin>.BAS; a stream 
coverage, &asin>.STR and a topography 
coverage, <basti.CON. A complete basin 
also includes an INFO fUe named 

32 



cbasindXAFL that stores the basin 
characteristics calculated by the 
commands. If any of these four 
j2omponents of a Basinsoft basin are 
missing, the basin is not considered 
complete. 

The E3asinsoft comman dsareasetof 
ARC macros that work with short INFO 
programs to calculate basin 
characteristics from basin 
representations. The macros reside in a 
subdirectory of the ARC/INFO workspace 
in which the basin coverages are 
maintained. The INFO programs and the 
characteristics ffle reside in the workspace 
INFO directory. 

To enter the system, execute the 
BASINSOFT.CPL file in the workspace. 
l%is CPL enters ARC/INFO. establishing 
the Basinsoft macros as system 
commands. It accepts, as an option, any 
legal command in ARC. A station fUe for 
the ARC/INFO session also may be 
specified after -STATION, -STAT or -ST. 
A station file identifies the hardware to be 
used by ARC/INFO. For example, the 
command: OK, CPL BASINSOFT 
ARCPLOT -STATION IOWA 
would enter ARC/INFO, establish the 
Basinsofi macros as system commands, 
set the hardware characteristics to those 
specified in the IOWA station file. and 
enter the ARCPLOT subsystem. 

The basic comman d format for the 
Basinsofi commands is: 
cchan cbasin> (recno) where: 
<than is the abbreviation of the 
characteristic to be calculated, 
cbasim is the name of the basin, and 
{recno) optionally specifies the record 

number in the characteristics ffle where 
the calculation will be stored. 
For example. the command: 
ARc:BSwIua 
will calculate the basin slope (I3S) for the 
basin named WILL, and will place the 
results of the calculation in the third 
record of the characteristics Ale. If a 
record number is specified. it needs to 
exist in the characteristics ffle.The (recno) 
option is included for flexibility. It allows 
multiple sets of characteristics to be 
maintained for a single basin. If omitted, 
the last record in the Ale will be updated. 
The contents of the updated record are 
overwritten. 

Many of the characteristics 
calculated by Basinsoft use data that are 
automatically maintained by ARC/INFO, 
such as the area of polygons and the 
length of arcs. It is assumed that the 
coverage units are feet. The commands 
apply appropriate conversions to calculate 
the desired units. 

The complete set of Basinsoft 
commands includes: 

BN - basin name: a descriptive l- to 40- 
character basin name. Entered after 
prompt. 

TDA - total drainage area, in square 
miles, including noncontributing areas. 

NCDA - drainage area, in square miles, 
that does not contribute to surface runoff 
at the basin outlet. 

CDA - drainage area, in square miles, that 
contributes to surface runoff at the basin 
outlet. 

BS - average basin slope, in feet per mile, 

33 



which is computed as: BS = (length of all 
contours in miles) x (contour interval in 
feet) / CDA. 

SL - stream length, in miles, is the length 
of the ma4n stream from basin outlet to 
end of the defined channel. 

BL - basin length, in mfles. SL plus the 
dension of the defined channel to the 
basin divide. 

CS - main channel slope. in feet per mile. 
is the diiference in elevation at points lo- 
and &percent of BL divided by the 
distance between those points. 

BW - effective basin width, in miles, which 
is computed as BW = CDA/BL. 

SF - shape factor, dimensionless, is the 
ratio of effective basin width to basin 
length. which is computed as SF = BW/ 
BL. 

TSL - total length of streams, in miles, 
which is computed by summing the 
lengths of all stream segments within the 
CDA. 

DD - drainage density, in miles per square 
mile. which is computed as DD = TSL/ 
CDA within the CDA. 

BR - basin relief, in feet, is the difference 
between the highest and lowest points 
within CDA. The user is prompted for 
these elevation values. 

RN - ruggedness number, in feet per mile, 
which is computed as RN = TSL x BR/ 
CDA. 

BP - basin perimeter, in miles. is the 
length of the entire basin divide. 

RR - relative relief, in feet per mile, which 
is computed as RR = BR/BP. 

DF - drainage frequency. in stream 
segments (arcs) per square mile, 
computed as DF = (number of stream 
segments)/CDA within CDA. 

BASING - calculates the entire set of 
basin characteristics for a basin. 

MAPBASIN - creates a map of the basin 
and the following ten characteristics: ‘IDA 
CDA, BS, CS. SF. DD. BR RN. RR, and 
DF. An example of MAPEASIN output is 
shown in figure 1. 

ADDCHREC - adds a record to the 
characteristics ffle. 

STARTBASIN - is a utility program to 
help set up a basin that is to be digitized 
from one 7.5~minute quadrangle. It 
prompts for the projection of the 
quadrangle and the smallest latitude and 
longitude values. It then creates empty 
basin coverages. with coverage units feet, 
and the characteristics ffle. 

Coverage And File! Structure 

As explained above, each basin in 
Basinsoft is represented by three ARC/ 
INFO coverages. The three coverages need 
to be maintained in feet and named as 
follows: <basinxBAS, <basin>.SIR, and 
&asin>.CON. The characteristic ffle 
needs to be named &asin>.CHAR. In each 
case, <basin> is a l-to 6-character basin 
name. For example, the basin named 
WILL consists of the three coverages, 
WILLBAS, WILLSIR, and WILL.CON, and 
the characteristic file named WILLCIIAR 

34 



Ngure 1. --An example of MAFBASIN output. 

Williams Cr nr Petersville, IA 

TDA = 1.795 mi’ DO = 2.18 mi/mi2 
CDA = 1.795 mi2 BR = 145 ft 
BS = 380.40 ft/mi RN = 315.61 f t/mi 
cs = 0.00 ft/mi RR = 26.17 ft/mi 
SF = 0.593 OF = 5.01 streams/mi’ 

35 



Figure 2.--File structure of the <basin>.BAS.PAT file 

DATAFILE NAME: <basti.BAS.PAT 
5 ITEMS: STARTING IN POSlTION 1 

COL ITEMNAME WDTH OPUT TYP N.DEC ALTERNATENAME 

4 12 F 3 
PERIMETER 4 12 F 3 

9 <basiID.BAs# 4 5 B - 
13 <basirD.BAs-ID 4 5 B - 
17 CONTRIB 1 1 I - 

The &asixn.BAS coverage is a 
polygon coverage that defines the basin 
area. For most basins, this coverage will 
contain one arc that defines the perimeter 
of the basin. For those basins that have 
noncontributing drainage areas, this 
coverage will contain additional polygons 
identifying the noncontributing areas. The 
item, CONTRIB, in the coverage PAT ffle 
will be used to determine whether a 
polygon represents a contributing or 
noncontributing drainage area. A value of 
0 in CONTRIB indicates a noncontributing 
drainage area and a value of 1 indicates a 
contributing drainage area. The structure 
of the <basin>.BAS.PAT me is shown in 
figure 2. 

The <basin>.STR coverage is a line 
coverage of all streams in the basin. The 
<basir~SlR.AAT tile has the item CODE 
in addition to those maintained by ARC/ 
INFO. This attribute can contain one of 
three values: 0, secondary stream: 1, main 
stream: and 2, extension line. All of the 
arcs that comprise the one main stream 
have a CODE value of 1. AU other arcs that 
represent streams have a CODE value of 
0. There is only one arc with a CODE value 
of 2. This arc is added to the end of the 
main stream and extends to the basin 
divide. This arc does not represent a 
stream, but is used to calculate the BL 
characteristic. The structure of the 

Figure 3.--Structure of the &asinxSTRJUT file 

DATAFILE NAME: <basti.STR.AAT 
8 lTEMS:STARTNG IN POSITION 1 

COL ITEM NAME WDTH OPUT. TYP N.DEC ALTERNATENAME 

A 
9 
13 
17 
21 
25 
29 

FNODE# 4 5 B - 
TNODE# 4 5 B - 
LPOLY# 4 5 B - 
RPOLY# 4 5 B - 
LENGTH 4 12 F 3 
<basirD.STR# 4 5 B - 
<basin>.STR-ID 4 5 B - 
CODE 1 1 I - 

36 



Figure 4.--Initial structure of the &asin>.CON.AAT file. 

DATAFILE NAME: <basW.CONJJAT 
8 ITEMS: STARTING IN POSITION 1 

COL ITEM NAME WDTH OPUT TYP N.DEC ALTERNATENAME 

i 
9 
13 
17 
21 
25 
29 

FNODE# 4 
TNODE# 4 
LPOLY# 4 
BPOLY# 4 
LENGTB 4 
<basim.CON# 4 
<basin>.CON-ID 4 
ELEV 4 

B - 
: B - 
5 B - 
5 B - 
12 F 3 
5 B - 
5 B - 
41 - 

&asin>.STR.AAT ffle is shown in figure 3. 
The &asin>.CON coverage is a line 

coverage that contains a series of 
topographic contours for the basin. There 
can be as many contours as desired as 
long as the interval is constant. Initially, 
the <basin>.CoN~WT tUe has the item, 
ELEV. in addition to those maintained by 
ARC/INFO. ELEV will contain the 
elevation of each contour arc. The initial 
fUe structure of the &asinxCON.AAT ffle 
is shown in figure 4. 

Once the <basinxBAS coverage and 
the cbasin>.CON coverage have been 
created, coded, and cleaned up, the ARC/ 
INFO IDENTITY comman d needs to be run 
on &asin>.CON. using <basU.BAS as 
the identity coverage. The resulting 
coverage will contain all the attributes of 
both initial coverages. All items in the 
&asinxCON.AAT file, except those 
maintained by ARC/INFO, ELEV, and 
CONTRIB must be deleted and the 
coverage renamed to &asin>.CON.This 
effectively allows contours that plot within 

Figure 5.-- The final structure of the cbasinxCON.AAT file 

DATAFILE NAME: <basin>.CONfiT 
9 ITEMS : STARTING IN POSITION 1 

COL ITEM NAME WDTH OPUT TYP N.DEC ALTERNATENAME 

A 
9 
13 
17 
21 
25 
29 
33 

FNODE# 4 5 B - 
TNODE# 4 5 B - 
LPOLY# 4 5 B - 
FwOLY# 4 5 B - 
LENGTH 4 12 F 3 
<basin>.CON# 4 5 B - 
<basin>.CON-ID 4 5 B - 
ELEV 4 41 - 
CONTRIB 1 1 I - 

37 



noncontributing areas to be differentiated 
from those that do not. The fInal structure 
of the &asin>.CON.AAT tile is shown in 
figure 5. 

Arc Macro And INFO Program 
structure 

One of the most attractive features of 
this set of programs is its simplicity. Most 
of the information needed to calculate the 
basin characteristics is automatically 
maintained by ARC/INFO. often. all that 
is needed are some simple calculations 
and unit conversions. Each command to 
calculate a basin characteristic consists of 
an ARC macro and a short INFO program. 
Almost all of the ARC macros are identical 
except that they initiate different INFO 
programs. The INFO programs are 
identical except for several lines that 
calculate the spe&c basin characteristic. 
Adding new basin characteristics can be 
done by adding an appropriate item to the 
characteristics file, and modifying an 
erdsting ARC macro and INFO program to 
calculate the new characteristic. 

The ARC macro, TDkAML, is shown 
in Qure 6, and the INFO program, 
TDA.PG, is shown in figure 7. Comments 
are included indicating which lines are 
changed to create other commands. 

Note that due to limitations in INFO 
one slightly unorthodox programming 
technique was needed in order to keep the 
programs generic or able to operate on a 
user specified basin and not a spe&c 
one.In these programs, INFO data flies are 
SELECTed using the following two lines: 
CONCATENATE $CHR!2 FROM ‘SEL 
‘,$CHRl,‘rest of file name’ EXEC $CHR2 
The SELECT comman d is created fi-om the 
basin name stored in $CHRl, and is put in 
$CHR2. The comman d in $CHFX2 is then 
executed by the EXEC command. Because 

the value of the variable executed by the 
EXEC comman d is not determined until 
run time, no file is explicitly selected 
during compilation and subsequent data 
item references will cause errors. To 
resolve this problem, duplicate INFO data 
ffles have been set up with the same Ble 
definitions as the corresponding actual 
flies and are SELECTed prior to the EXEC 
command. Because a ffle with the proper 
structure has been SELECTed, 
compilation fmishes without errors. A 
consequence of this method of selecting 
f&s is that anytime the ffle definition of an 
INFO ffle referenced by one of the 
programs changes, the definition of the 
corresponding duplicate file also needs to 
reflect the change and all programs that 
reference the file need to be recompiled. 
Otherwise, errors will occur, but no 
warning will be given! 

Figure 6.--The ARC macro, TDA.AML 

&args basin recno 
&s basin [translate %basin”h] 
8df [null %basin%) &then 

&return &warning Usage:TDA 
&asin> {recno) /* This line 
changes... 

8df h ( [edsts %basin%.bas -coverage] 8~ 
[exists %basin%.con -coverage] - 
& [exists %basino/b.str -coverage] 
& [exists %basin%.char -info] ) 
&then &return -g-m* 
%basin%. is incomplete or does not 
extst. 

8df [null %recno%] &then &s recno 0 
&ifA([type%recno%)=-l)&then 

&return 8rwaming Vecno” must be 
an integer record number. 

&system corn0 -ntty 
down info 
&data info 
ARC 

38 



RUN TDA.PG /* and this line changes 
%basin%” 
%recnoOh 
.Q STOP 
&end 
up 
&system corn0 -tty 
&return 

Figure 7. --The INFO program, TDAPG. 

PROGRAM ‘IDAPG 
FO $CHRl,8,8,C 
FO $CHR2,80,80,C 
FO $NUM21,4,12,F,3 
FO $NUM23,4,4,1 
ACC $CHRI /* Receive the basin name 
ACC $NUM23 /* Receive the char ffle 

recno 
CMD COMO -TTY 
SEL FAKE.CHAR :use following EXEC to 

select real file: 
CONCATENATE $CHR2 FROM ‘SEL’, 

$CHRl;.CHAR 
E2CEC $CHR2 
IF $NOSEL EQ 0 

ADD TDA FROM ADD.DUMMY 
ENDIF 

IF $NUM23 NE 0 
RES BY $RECNO = $NIJM23 
IF $NOSEL EQ 0 

CONCATENATE $CHR2 FROM 
‘Specified record doesn’t exist in 0 
$CHRl,‘.CHAR.’ 
DIS $CHR2 
GOT0 END 

ENDIF 
ENDIF 
SEL FAKEBASPAT :use following EXEC 

to select real me: /+These 
CONCATENATE $CHR2 FROM ‘SEL 

‘,$CHRl,‘.BAS.PAT/*lines 
EXEC $CHR2 /*change 
RES BY $RECNO = 1 /*for each 
CALC$NuM21=1-AREA 

/*characteristic. 

SEL FAKE.CHAR ;use following EXEC to 
select real file; 

CONCATENATE $CHR2 FROM ‘SEL 
‘,$CHRl,‘.CHAR’ 

EXEC $CHR2 
IF $NUM23 EQ 0 

ms BY $RECN~ EQ $NOSEL 
ELSE 

RES BY $RECNO EQ $NUM23 
ENDIF 
CALC TDA = $NUM21 .00000003587 

/* This line also changes. 
LABEL END 
MO -NTIY 
END 

Efforts To Automate Data Entry 

Once the coverages representing a 
basin are in place, the Basinsoft 
commands are easy and straightforward. 
Digitizing the basins, however, can be a 
tedious and lengthly processIn order to 
decrease the time spent on this process, 
several possible ways of automating the 
data entry have been investigatedOne 
possibility is acquiring digital line-graph 
data for hydrography and topography. 
This method still requires someone to 
define the drainage-basin perimeter and 
any noncontributing drainage area in the 
basin. Another possibility is acquiring 
digital elevation-model data. Programs 
exist that can determine the basin 
perimeter as well as any noncontributing 
drainage area, generate streams, and 
generate topographic contours from 
digital elevation-model data. This 
information can then be converted into 
ARC/INFO format and entered into the 
Basinsoft programs. The biggest problem 
with both of these possibilities is the major 
task of producing this digital data for all of 
the areas that need to be analyzed. 

39 



Basinsoft offers a means of relating 
flood-frequency predictions more directly 
to physical characteristics of individual 
drainage basins. Basinsoft provides a 
framework to which additional data 
describing the physical characteristics of a 
basin can be added as such data are 
obtained. This should ultimately help 
make predictions of flood frequency as 
accurate as possible. 

Lam. O.G., 1973, Floods in Iowa-- 
Technical manual for estimating their 
magnitude and frequency: Iowa Natural 
Resources Council Bulletin 11.56 p. 

------ 1987, Method for estimating the 
magnitude and frequency of floods at 
ungaged sites on unregulated rural 
streams in Iowa: U.S. Geological Survey 
Water-Resources Investigations Report 
87-4132, 34 p. 

Schwab, N.H.. 1953. Iowa floods, 
magnitude and frequency: Iowa 
Highway Research Board Bulletin I, 17 1 
P* 

------1966, Magnitude and frequency of 
Iowa Floods: Iowa Highway Research 
Board Bulletin 28, 45 p. 

40 



CHAPTER D--COMPUTER GENERATED GRAPHICS 

41 



THE INTEGRATION OF COMPUTER GRAPHICS 
AND TEXT-EDITING PROGRAM 

By Donald R. Block1 

ABSTRACT 

It is not possible to edit text parts of a graphics display while in 
CA-TELIAGRAF because it does not have an internal text editor. A FORTRAN-77 
program called NCTELAGRAF was written to enable the user to retain graphics 
screen display during a CA-TELIAGRAF session while internally using PRIMOS 
command-file text editors without leaving CA-TELLAGRAF. This program allows 
use of text editors EM, ED, and WM and the RUN and SYS commands within CA- 
TELLAGRAF. The RUN command sends the edited file to CA-TELLAGRAF for 
execution. The SYS command invokes the PRIMOS emulator, which permits the 
user to enter commands directly to the operating system. 

INTRODUCTION 

Computer-generated graphics is rapidly becoming a standard method of 
producing graphs and charts. In the U.S. Geological Survey, computer- 
generated graphs and charts are used to display and help interpret 
hydrologic data. Computer software packages that enable the analyst to 
easily produce such graphs and charts are required tools in many hydrologic 
investigations. Many of the computer-generated graphics produced by Survey 
personnel are products of Computer Associates' CA-TELLAGRAF or CA-DISSPLA 
software run on PRIME minicomputers. CA-TELLAGRAF is primarily used for 
producing graphs from small data sets and for presentation graphics. CA- 
DISSPLA is a group of FORTRAN subroutines used by programmers to perform 
repetitive tasks requiring interaction of graphs with large data bases. CA- 
TELLAGRAF is relatively user friendly when compared to CA-DISSPLA. 

CA-TELLAGRAF can be run in an interactive or batch mode. During an 
interactive session, CA-TELLAGRAF receives commands directly from the user, 
whereas during a batch session, it reads commands from a previously created 
command file. The most common methods of creating command files are: (1) 
using the "SAVE." command during an interactive CA-TELLAGRAF session, (2) 
entering CA-TELLAGRAF commands into a file using a text editor, and (3) 
running other software packages that create command files, such as Computer 
Associates' CueChart. 

Advantages of using command files to run CA-TELIAGRAF are that (1) they 
can be easily modified to make changes in a graph and (2) they are often 
data-independent, allowing the production of the same style graph for 
different sets of data without modification. In the Survey's North 
Carolina, Nevada, and Tennessee District offices, libraries of command files 
are used by District personnel to produce graphs (R.C. Massingill, U.S. 
Geological Survey, written commun., 1988; J.C. Stone, U.S. Geological 

lcomputer Programmer Analyist, U.S. Geological Survey, 3916 Sunset Ridge 
Road, Raleigh, North Carolina 27607; telephone: (919) 571-4000. 

43 



Survey, oral commun., 1988). The disadvantage of using command files is 
that the exact command file required for a particular hydrologic application 
commonly is not available in the library, and modifying one of these command 
files using CA-TELLAGRAF is time consuming. Because CA-TELLAGRAF has no 
internal text editor, modifications are performed in an interactive manner. 
The user makes changes to a command file using an available external editor 
and then runs CA-TELLAGRAF to see the results of these changes. If further 
modifications are necessary, the user must repeatedly "quit" CA-TELLAGRAF, 
make the modifications, and then reinvoke CA-TELLAGRAF. 

The time consumed alternating between CA-TELLAGRAF and external editors 
can frustrate the user. To alleviate this frustration, a FORTRAN-77 program 
called NCTELAGRAF2 has been written to allow the use of Marc Software's 
WordMarc Composer+ and PRIME computer's EMACS and ED editors during an 
interactive CA-TELLAGRAF session. This paper describes the operation and 
programming of NCTELAGRAF. 

NCTEIAGRAF USER IN-FORMATION 

NCTELAGRAF is invoked by typing "NCTELAGRAF filename". The filename 
argument refers to the user's CA-TELLAGRAF command file. If the filename 
argument is omitted, the program prompts the user to enter the name of his 
command file. Once the filename is entered, that file becomes the selected 
file inside NCTELAGRAF. 

Once invoked, NCTELAGRAF submits the selected file to CA-TELLAGRAF for 
execution. After the selected file has been executed, control is returned 
to NCTELAGRAF. NCTELAGRAF looks and operates like CA-TELLAGRAF. Unlike CA- 
TELLAGRAF, NCTELAGRAF does not automatically clear graphics from the 
terminal screen after viewing. This allows the user to refer to the graphic 
while editing the command file. The user may clear the graphics area at any 
time using the terminal's graphics erase function. NCTELAGRAF also 
automatically appends a period to all user-entered commands before 
submitting them to CA-TELIAGRAF for execution, with the exception of the 
five NCTELAGRAF commands: EM, ED, WM, RUN, and SYS. 

The EM, ED, and WM commands invoke the text editors made available by 
NCTELAGRAF. The EM command invokes the EMACS full screen editor. The ED 
command invokes the PRIMOS line editor. The WM command invokes the WordMarc 
Composer+ full screen editor. The RUN command submits the selected file to 
CA-TELLAGRAF for execution. The EM, ED, WM, and RUN commands can be entered 
with or without a filename argument. If the commands are entered with no 
filename argument, the selected file becomes the object of the command's 
action. If the filename argument is entered with the command, then that 
file becomes the selected file and is the object of the command's action. 

The SYS command invokes NCTELAGRAF's "PRIMOS emulator". While in 
PRIMOS emulation, NCTELAGRAF imitates PRIMOS by allowing the user to submit 
commands directly to the operating system. To quit PRIMOS emulation and 
return to NCTELAGRAF, the user must type "Q". The user can also quit a 
NCTELAGRAF session and return to PRIMOS by typing "Q". 

2All references to NCTELAGRAF refer to NCTELAGRAF version 2.0. 

44 



NCTELAGRAF PROGRAMMER INFORMATION 

N'CTEIAGRAF is a Fortran- program that invokes CA-TELLAGRAF as a 
subroutine using the PRIME subroutine CP$. NCTELAGRAF submits all commands 

-except EM, ED, WM, RUN, and SYS to CA-TELLAGRAF using a COMI (command input) 
file for an input buffer. This method has been described by Block and 
Gordon (1988, p. 100). 

NCTELAGRAF submits command files to CA-TELLAGRAF as control files with 
the command "CONTROL FILE filename." where the filename argument is the 
pathname of the user's selected CA-TELLAGRAF command file. CA-TELLAGRAF is 
exited by default when a control file completes execution. To prevent this, 
NCTEIAGRAF appends the line "RESET. CONTROL FILE KB." to all command files 
before submitting them to CA-TELLAGRAF,for execution. Immediately after the 
control file has been executed by CA-TELLAGRAF, NCTELAGRAF takes the 
terminal out of graphics mode to prevent CA-TELLAGRAF from clearing the 
graphics area after the graphic is drawn. Prior to allowing user input, the 
command "CONTROL FILE 'DUMMY'." is submitted to CA-TELLAGRAF for execution. 
This command opens a control file named "DUMMY", which contains no 
information, but opening it causes CA-TELLAGRAF to close the user's selected 
command file. 
NCTELAGRAF. 

The selected command file can then be opened for editing by 

The NCTELAGRAF commands EM, ED, WM, and SYS use the PRIME subroutine 
CP$ to submit commands to the PRIMOS operating system. When the process 
invoked by one of these commands completes execution, control is returned to 
NCTELAGRAF. The NCTELAGRAF RUN command checks the selected file for the 
line "RESET. CONTROL FILE KB.", appends this line if necessary, and then 
submits the commands "RESET. RESET. CONTROL FILE filename." to CA-TELLAGRAF. 
These commands instruct CA-TELLAGRAF to reset all variables to their default 
values before executing the control file. As before, after the control file 
has been executed, the command "CONTROL FILE 'DUMMY'." is submitted to CA- 
TELLAGRAF and results in the closing of the user's selected command file. 

When the user types a "Q" in NCTELAGRAF, the command is submitted to 
CA-TELLAGRAF, ending the CA-TELLAGRAF session. This causes the CP$ 
subroutine that invoked CA-TELLAGRAF to return control to the main section 
of NCTELAGRAF allowing it to complete execution. 

NCTEIAGRAF SYSTEM INFORMATION 

The NCTELAGRAF.F77 program is delivered with the accompanying files: 

NCTELAGRAF.READ.ME.lST - the installation instructions and user's 
manual, 

NCTELAGRAF.INSTALL.CPL - a program to compile and bind 
NCTELAGRAF.F77, and 

NCTELAGRAF.USERS - a list of people to whom the software has been 
sent. 

The files occupy 14 PRIME records of disk space. The software can be 
installed for a single user or for multiple users. NCTELAGRAF requires the 
following conditions to operate correctly without modification: 

45 



1. The commands EM, ED, and WM invoke PRIME's EMACS, PRIME's ED, and 
Marc Software's WordMarc Composer+, respectively. 

2. The file named TAGPRO.DAT exists in the directory from which 
NCTELAGRAF is invoked, and this file is correct for the terminal 
being used. Refer to the CA-TELLAGRAF user's manual for more 
instructions on setting up a TAGPRO.DAT file. 

3. Every user has an active abbreviations file. This is required for 
NCTELAGRAF's PRIMOS emulator because NCTELAGRAF inserts "AB -EE" at 
the beginning of all commands submitted to PRIMOS. This allows the 
PRIMOS emulator to expand user abbreviations and will cause an 
error if no active abbreviations file exists. 

NCTELAGRAF works with Revision 6.0 of CA-TELLAGRAF at Revision 2.0 of PRIMOS 
and is available upon request to the District Chief, U.S. Geological Survey, 
3916 Sunset Ridge Road, Raleigh, North Carolina 27607. Installation 
instructions are included. 

SUMMARY 

Many computer-generated graphics produced by Survey personnel make use 
of CA-TELLAGRAF software for producing graphs and other presentation 
graphics. However, because CA-TELLAGRAF has no internal text editor, the 
editing of text within the graphics is a time-consuming iterative process 
whereby the user must exit CA-TELLAGRAF each time to make text modifications 
and then reenter the program to view the results of changes. 

The NCTELAGRAF program essentially provides an internal text-editing 
capability during operation of the CA-TELIAGRAF program without exiting from 
CA-TELLAGRAF. Thus, on-screen text changes may be made and results 
immediately evaluated. The EM, ED, and WM commands are the text editors 
made available by NCTEIAGRAF. Operating commands RUN and SYS, respectively, 
submit the edited file to CA-TELLAGRAF for execution and invokes 
NCTELAGRAF's PRIMOS emulator. NCTELAGRAF-user, programmer, and system 
details are provided. 

REFERENCES 

Block, D.R., and Gordon, J.A., 1988, COLLAGE: a menu-driven graphics editing 
software package, in Proceedings of computer associates graphics users' 
group meeting, Nashville, Tenn., Feb. 29-Mar. 1, 1988: p. 93-102. 

Integrated Software Systems Corporation, 1985, TELL-A-GRAF user's manual, 
version 5.0: San Diego, Calif., Integrated Software Systems 
Corporation. 

46 



USE OF THE GRAPHICAL KERNEL SYSTEM STANDARD 

FOR HYDROLOGIC APPLICATIONS 

By Thomas C. Wood and Alan M. Lumb 

ABSTRACT 

The Graphical Kernel System is an internationally accepted standard for 
computer graphics programming that allows for maximum portability of 
applications between different hardware platforms. Although the Graphical 
Kernel System standard is language-independent, it provides specific language 
bindings, such as Fortran, which are used for source code development. The 
Graphical Kernel System standard addresses the main functional areas of 
computer graphics programming, including output, coordinate systems, 
segmentation, interactive input, and “meta” file generation. Graphical 
Kernel System implementations are being developed on an increasing number of 
hardware platforms. The implementations most useful to the U.S. Geological 
Survey are those on Prime and UNIX-based workstations. 

A set of Fortran utilities have been developed using the Graphical 
Kernel System for a range of surface-water programs used by the Geological 
Survey. Graphics include time plots at scales of minutes to years, x-y 
plots, and probability plots. Non-time axes can be arithmetic or 
logarithmic. Probability plots with Gaussian transformations can be 
fraction, percent, or recurrence interval. The utilities are stored in a 
Geological Survey software library available on most Prime systems. 
Implementations also have been made on a UNIX-based workstation and a 
personal computer. 

47 



INTRODUCTION 

The Graphical Kernel System (GKS) is an internationally accepted 
standard for computer graphics programming that allows for maximum 
portability of applications between different hardware platforms. GKS was 
developed as a result of an increasing demand for computer graphics standards 
that began during the late 1960’s, when new technology made computer graphics 
available to more people than ever before. 

Graphics displays and plotters were developed and in use by the early 
1950's. Color displays were in use by 1962. Most conventional graphics 
hardware had emerged by 1965. However, few people were involved with 
computer graphics. It is estimated that only 100 display systems were 
installed worldwide in 1965, at an average cost of $400,000 each (Hopgood and 
others, 1983, p. 2). Hardware vendors provided software that took advantage 
of their particular hardware capabilities. This led to very different 
approaches to writing graphics software. 

Growing Demand for Standards 

During the late 1960’s, new technology produced interactive graphics 
devices at much lower costs, which made graphics available to a larger 
population. These new devices offered new capabilities, yet there was still 
no standard approach to writing software to address them. The lack of a 
common approach to developing graphics systems led to the formation of 
different schools of graphics systems design. The different systems were 
generally (1) device-dependent, (2) application-dependent, and (3) 
environment-dependent (Enderle and others, 1987, p. 54). 

During the early 1970’s, the cost of graphics devices continued to 
plummet and their use spread rapidly. Graphics systems developers were 
growing tired of re-writing their software with each hardware change. Also, 
people wanted to exchange programs with their colleagues without re-writing 
every routine at the local installation. Computer graphics seemed ready for 
an attempt at standardization. 

Standardization Activities 

During the middle 1970’s, numerous standards organizations around the 
world began developing ideas for graphics standards. Major efforts were 
undertaken in Germany, the United States, and at the international level. 
Portability of application programs was the primary target of the 
standardization attempts. This would be achieved by standardizing the 
interface between the application program and a combined set of graphics 
functions. Three main strategies emerged for developing this standard 
interface (Enderle and others, 1987, p. 54): 

(1) Design a new graphics language. It is very difficult to introduce a 
new programming language. 

(2) Design a graphics extension of an existing high-level language. 
This is easier, however, the compiler would require modification to add new 

48 



features and overhead. It is difficult to persuade users of a language to 
accept new overhead. 

(3) Design a subroutine package, callable from existing high-level 
languages. Defining graphics functions using parameter lists is not very 
appealing, however, this is the only strategy that could be implemented 
without harming other interests. Therefore, a subroutine package became the 
vehicle for implementation of the GKS and other proposed graphics standards. 

In Germany, the Committee for Injl’ormation Processing founded the 
subcommittee “Computer Graphics” in 1975. This 13 member group actually 
developed the initial GKS. The first draft of GKS was published in 1977. 

In the United States, the Association for Computing Machinery’s Special 
Interest Group on Graphics (ACM-SIGGRAPH) founded its own Graphics Standards 
Planning Committee in 1975. The Graphics Standards Planning Committee 
developed another subroutine package, known as the CORE system. 

On the basis of increasing interest in graphics standards around the 
world, the International Organization for Standards formed a graphics 
committee in 1977, named WG2, with the goal of producing an international 
standard. In 1978, WG2 reviewed both the CORE and GKS proposals. In 1979, 
GKS was chosen as the starting point for an international standard. The 
International Organization for Standards managed the long GKS review and 
approval process. 

GraDhical Kernel Svstem Becomes an International and American Standard 

In August 1985, the International Organization for Standards published 
GKS as an international standard. Soon after, the American National 
Standards Institute adopted GKS as an American National Standard. In 
November 1986, American National Standard GKS was adopted as a Federal 
Information Processing Standard, for use in the Federal Government. 

DEFINITION OF THE GRAPHICAL KERNEL SYSTEM 

GKS is a hardware-independent, language-independent, device-independent, 
application interface for two-dimensional graphics output and interactive 
graphics input, providing maximum portability of applications. GKS contains 
all basic functions for interactive and non-interactive graphics on a wide 
range of graphics equipment. 

Hardware IndeDendence 

GKS is implemented through a subroutine package, which is called from a 
high-level language, such as Fortran. Practically all hardware platforms 
support at least one high-level language. Therefore, GKS is hardware 
independent. 

Language IndeDendence 

The GKS standard defines its capabilities through abstract subroutine 
names, such as ‘lPOLYLINE1t, “SET TEXT HEIGHT”, and so forth. GKS implementors 
translate these abstract subroutine names into high-level language specific 

49 



subroutine names such as “GPL” “GSCHH” and so forth, in Fortran. GKS may 
be implemented il)l any high-leve; languagk that provides the subroutine 
construct. Therefore, GKS is language independent. 

Device Indeoendence 

The GKS standard is at such a level of abstraction that device 
peculiarities are shielded from the application program(American National 
Standard for Information Systems, 1985, p. 12). An important concept that 
helps GKS be device independent is the logical workstation. The GKS 
interface provides uniform input and output functions that are defined on 
logical workstations. There exists an interface that assigns the abstract 
input and output functions defined on the logical workstations to specific 
device drivers, 

Main Components of the Graphical Kernel System 

GKS addresses the main functional areas of computer graphics 
programming. It specifies standard output primitives that are used to 
generate pictures. Three coordinate systems are provided, as well as 
transformations between each. GKS also provides segmentation and 
interactive input, which when combined together, add a new dimension to 
computer graphics systems. The logical workstation concept allows for 
device-independent graphics programming. Two metafile formats are supported 
for picture transfer. 

Output Primitives 

One of the basic functions of a graphics system is to generate pictures. 
In GKS, pictures are composed of output primitives (fig. D6). The main 
output primitives are: 

(1) Polyline: a line connecting a list of specified positions, 

(2) Polymarker: a symbol drawn at a specified position, 

(3) Text: a character string drawn at a specified position, 

(4) Fill Area: a polygon filled with a specified color or pattern. 

Primitive attributes, such as polyline color, text height, and so forth, 
may be specified individually by the application program through attribute 
setting routines. GKS also provides attribute bundle indices and tables for 
each primitive type as an alternative. Each output device available to GKS 
has a set of primitive bundle tables associated with it. The application 
specifies a bundle index number for each primitive type and leaves the 
attribute selection to the bundle table (fig. Di’). An example might be 
drawing a line on a graph. The application specifies “POLYLINE BUNDLE INDEX 
2”) followed by “DRAW POLYLINE. ‘@ If a color device is specified as the 
workstation, the line is drawn in red on the basis of the attributes 
specified in the bundle table for that device. If a monochrome device is 
specified as the workstation, the line is drawn in a dashed pattern in white. 

50 



Coordinate Systems and Transformations 

GKS defines three coordinate systems that are used to display and 
manipulate graphics on any device (fig. D8). The first of these is world 
boordinates, a Cartesian coordinate system. The application defines world 
coordinates by specifying units of choice in the X and Y direction. GKS 
defines an intermediate coordinate system, normalized device coordinates with 
abstract values of 0 to 1 in both X and Y directions. The third coordinate 
system used by GKS is the device-dependent device coordinates, which GKS 
determines from the device being used. A normalization transformation is 
used to map world coordinate space into normalized device coordinate space. 
Normalized device coordinate space is then mapped to device coordinates space 
by a workstation transformation. 

An example might be an application that produces a graph with units of 0 
to 100 on both X and Y axes, which the programmer determines by the data 
being portrayed. The programmer defines world coordinates as 0 to 100 in 
both X and Y directions. The output device for the program might be any 
number of graphic devices with different sizes of output area. In order for 
the graph to be output correctly on any device available to GKS, the 
specified world coordinates need to be transformed to device coordinates, 
which varies depending on the device. This is done through the intermediate 
coordinate system, normalized device coordinates. First, the world 
coordinates ranges of 0 to 100 are transformed into an arbitrary normalized 
device coordinate space, which ranges from 0 to 1 in both X and Y directions. 
Then GKS can transform the arbitrary normalized device coordinates space into 
device coordinates of the specified device and the graph is drawn correctly. 

Segmentation 

As stated earlier, GKS pictures are composed of output primitives, such 
as lines, text, and so forth. Output primitives may be grouped together in 
parts and may be addressed and manipulated by the application as single units 
called segments. An example of creating a segment with GKS abstract routines 
is: 

CREATE SEGMENT (1) 
DRAW POLYLINE (5,X,Y) 
DRAW TEXT (XPOS,YPOS,~EGMENT 1’) 
CLOSE SEGMENT. 

Segments may be manipulated by changing their transformation. GKS 
provides utilities that can be used by the application to move, scale, and 
rotate segments, through segment transformations. Segment attributes can 
also be changed by the application. These attributes include: 

(1) Visibility: indicates whether or not a segment is being displayed 
on the display surface. 

(2) Highlighting: a segment may be emphasized in a device-independent 
way by changing its appearance. An example is blinking or emboldening the 
primitives that make up the segment. 

51 



LJ rJ 
POLYLINE POLYMARKER 

NCTM 

Phoenix 

1988 

TEXT 

Figure D6.--Graphi 
standard output 

FILL AREA 

MONOWROME DEVICE 
PWYLINE BUNDLE TABLE 

- POLYUNE BUNDLE INDEX 2 - 
DRAW POLYUNE 

cal Kernel System 
primitives. 

Figure D7. --Device independent output. 
Specifying “POLYLINE BUNDLE 
INDEX 2” produces a solid red line 
on color devices and a dashed line 
on monochrome devices, based on 
attributes set up in bundle table. 

NORMALIZATION WORKST’ATION 
TRANSFORMATION TRANSFORMATION 

1 - 
* * 

WC NDC DC 

APPLICATION 
PROGRAM 

0 1 
NORMALIZED WORKSTATION 

PICTURE 

Figure D8. --Graphical Kernel System coordinate 
systems and transformations. 

52 



(3) Detectability: indicates whether or not a segment can be selected 
by the pick input function. 

Segment manipulation works well on terminals that support segmentation 
in their hardware, such as Tektronix 4107 and higher models. GKS provides 
software emulation of segmentation on devices lacking segmentation, such as 
Tektronix 4010. However, segment manipulations performed through software 
are considerably slower than those managed by hardware. 

Interactive Input 

GKS provides a method for the application to request user input. This 
interactive input, combined with segment manipulation that is based on the 
input, adds a new dimension to computer graphics systems. A user of such a 
system is able to point to a certain part of the display (segment), move, 
erase, scale, rotate, and so forth, the selected part of the display. 

GKS allows user input from several different logical input device 
classes, which are abstractions of physical devices; this provides device- 
independent input capability. Logical input devices are mapped to physical 
input devices, on the basis of a device driver selected by the application. 
Logical input classes include: 

(1) Locator: provides a position in world coordinates, supplied by the 
user positioning a locator device. An example of a locator input device is a 
crosshair cursor moved around on a display by thumbwheels. 

(2) Pick: provides a segment name, determined by the user positioning a 
locator on an output primitive contained in the segment. 

(3) Valuator: provides a real number, supplied by the user, to be used 
for scaling, rotation, and other segment manipulation. Entering a number 
into a keyboard is the most common valuator input device. 

(4) Choice: provides an integer which corresponds to the user’s 
selection from a number of choices. These choices might be assigned to 
function keys on a keyboard, for example. 

Logical Workstation Concept 

GKS provides an application with device independence through the logical 
workstation concept. The logical workstation is an abstraction of the 
physical device. The application contains uniform input and output 
definitions that are mapped from the logical workstation to the actual device 
being used. A small section of program code defining the physical devices 
available to the application may be set up separately from the body of the 
application. The body of the application contains abstract references to 
input and output and is, therefore, completely portable. Input is referenced 
by logical input devices. Output is referenced by general drawing primitives 
and primitive attribute bundle tables (figs. D7 and D8). 

GKS implementations provide some form of a workstation reference 
document, which details device-specific information about each device 
available to the particular GKS implementation. This information includes 

53 



the bundle tables for each primitive type, input devices available for each 
logical input class, whether segmentation is available through hardware, and 
so forth. 

Metaf iles 

Graphics metafiles provide a method of storing and retrieving pictures 
in an external file in a device and application-independent manner. GKS 
provides an interface to two metafile formats, GKS Metafile and Computer 
Graphics Metafile. Both metafile formats are available to GKS applications 
by specifying a corresponding workstation identifier. These identifiers are 
listed in the workstation reference document. 

GKS Metafile is a format used only by GKS and is not part of the 
international standard, but is heavily used by GKS applications. A GKS 
Metafile records all output, including segment information, in a sequential 
format. GKS applications are able to read a GKS Metafile and display all or 
part of the stored picture, completely under user control. 

The Computer Graphics Metafile is an American National Standards 
Institute standard and a draft international standard currently being 
processed by the International Organization for Standards. The Computer 
Graphics Metafile is being implemented by a rapidly increasing number of 
software vendors as an optional output format for graphics systems. A 
Computer Graphics Metafile stores a static picture and does not include 
segment information. 

IMPLEMENTATION OF THE GRAPHICAL KERNEL SYSTEM 

Practical implementation of GKS is done through language bindings that 
have been developed for several programming languages. There is a GKS 
implementation on most hardware platforms. 

Language Bindings 

GKS is defined in a language-independent manner, specifying abstract 
routines for graphical functions. These abstract routines are translated 
into language-specific routines for each particular programming language. 
This language-dependent layer is called a language binding. GKS has been 
translated into Fortran 77, PASCAL, C, and ADA programming languages. Each 
of these language bindings are also standardized in order to preserve 
portability of the applications. Standard routine names are derived from 
abbreviations for each corresponding GKS function. In the Fortran language 
binding, all routines begin with the letter “G” and end with up to five 
letters as an abbreviation for the function of the routine. For example, the 
GKS input function “REQUEST LOCATOR” is translated to routine “GRQLC”. 

Hardware Platforms 

GKS has been implemented by numerous hardware and software vendors on 
most platforms, from microcomputers to supercomputers. Purchase prices for 
GKS implementations range from $500 to greater than $30,000. GKS 



implementations of most interest to the U.S. Geological Survey are those 
available for Prime systems and UNIX-based workstations. 

The Geological Survey currently has a GKS implementation on every Prime 
in the Distributed Information System (DIS) network. Computer Associates’ 
CA-GKS, using the Fortran binding, was introduced as part of the DISSPLA 
revision 10.0 upgrade in 1985. CA-GKS, although a separate package from 
DISSPLA, does share files with DISSPLA, including device drivers and 
metafiles. Other companies that offer GKS packages on the Prime include 
NOVA*GKS by Nova Graphics Internatiotil, D-PICT/GKS by Pansophic Systems, and 
GRAFPAK-GKS by Advanced Technology Center. 

The graphics requirements of DIS-II, the Geological Survey’s next 
generation of computing tools, includes a GKS implementation. The main 
component of DIS-II will be a UNIX-based workstation. There is a rapidly 
increasing number of vendors offering GKS implementations on UNIX-based 
workstations. These include all of the packages mentioned above for Prime 
systems, as well as GK-2000 by Precision Visuals, Inc., and Visual: GKS by 
Visual Engineering. 

WHEN TO USE THE GRAPHICAL KERNEL SYSTEM 

When designing a graphics application, the existence of one or more of 
the following situations warrants consideration of using GKS for the 
application development (Federal Information Processing Standard, 1986, p. 
2): 

(1) The application will be programmed centrally for a decentralized 
system that might consist of different types of computers and graphics 
devices. 

(2) It is probable that the life of the application will be longer than 
the life of the present graphics equipment. 

(3) The application is likely to be used by organizations outside the 
Federal Government, such as state and local governments, universities, and so 
forth. 

(4) The application will be run on equipment other than that on which it 
is developed. 

(5) The application will be maintained by programmers other than the 
original ones. 

Advantages of Develonina an Apolication Using a 
Graphical Kernel Svstem Imnlementation 

(1) Maximum portability of applications between different hardware 
platforms. 

(2) Limited dependence on a specific software vendor. GKS 
implementations may be purchased from numerous vendors. 



(3) Access to new devices with minimal program modification, due to the 
logical workstation concept. 

(4) Program development in commonly used languages, such as Fortran. 

Disadvantages of DeveloDina an ADDliCatiOn Usina a 
Graphical Kernel Svstem Implementation 

(1) More programming required to produce output than in most proprietary 
graphics packages. For example, drawing a chart axis requires individual 
calls to primitive drawing routines to draw the axis line, each tick mark, 
and the tick labels. A GKS program might require ten or more lines of code 
to draw an axis. A package like DISSPLA requires only one line of code to 
produce the entire axis. 

(2) Additional code is required to translate logical workstation 
commands to those of a particular device. This additional overhead will 
sometimes slow a GKS application, compared to more device-specific software. 

APPLICATION OF THE GRAPHICAL KERNEL SYSTEM FOR SURFACE WATER PROGRAMS 

For all five of the reasons listed in the previous section, GKS was 
selected to develop graphics output ,for surface-water programs. These 
programs include several rainfall-runoff and flow-routing models as well as 
programs for flow-duration analysis, frequency analysis and generalized 
leasts squares. These programs are used throughout the Geological Survey on 
Prime’s, UNIX-based workstations, and personal computers. Thus, portability 
is of primary interest and can provide major savings in the resources 
required to develop and maintain the necessary graphics software. 

As stated earlier, one of the major disadvantages of GKS is the 
additional programming effort required. Thus, one goal for the surface-water 
graphics software was the development of a set of graphics subroutines that 
would reduce the level of programming for subsequent applications. The use 
of a common set of subroutines also reduces the effort required to maintain 
the software. A brief description of the subroutines and graphics products 
is contained in the following sections. These subroutines are a first effort 
at establishing a standard set of graphics subroutines. When sufficient 
experience has been gained, the subroutines will be refined, redesigned, or 
discarded. The goal is to provide several layers of graphics subroutines for 
use in surface-water programs. At the highest layer would be several 
subroutines with a minimum number of arguments. At the lowest layer would be 
the GKS subroutines. Layers in between would include Fortran subroutines 
that perform part of the graphic display such as a log axis, time axis, or 
explanation text. At the top levels, many items are defaulted. At the lower 
layers, the programmer has to set more items or request them from the user. 
When a change is made to another graphics standard, in theory, only the lower 
layer routines need to be changed. 

56 



Granhical Kernel Svstem Subroutines 

Table Dl lists the GKS subroutines that are used. A basic 
implementation of GKS is used with no segmentation or bundling. Only one 
workstation is open at a time. 

Graphics Subroutines Usage 

Application programmers can use the graphics subroutines without 
learning the details of GKS. Programming with these subroutines is similar 
to using DISSPLA or PLOTlO. All the subroutines are in a library that may 
be obtained from the U.S. Geological Survey, Office of Surface Water, 
415 National Center, Reston, Virginia 22092. 

The subroutines were designed around two common blocks, one for the data 
to be plotted and one for all the text and specifications for the plot (table 
D2). When all the appropriate variables in the common blocks have been set, 
a routine is called to make the plot. 

The graphics subroutines can be used with one of three approaches: 

(1) linking selected subroutines in the users’ program, 

(2) filling the common block using a subset of the subroutines and 
linking the subroutine library, or 

(3) partially filling the common block using selected subroutines, then 
letting the user interactively set or change variables with an additional set 
of subroutines. 

The third approach uses the most subroutines from the library. All the 
subroutines are defined in a system documentation file also available from 
the Office of Surface Water. That document is computer generated to help 
guarantee accuracy and more easily generate current documentation. For each 
subroutine, the document includes name, type, and purpose. Each argument is 
defined, the type is specified, and each is classified as input, modify, or 
output. Common blocks and variables that are used are also listed. 

The variables used in the common blocks are listed and defined in 
table D2. Note, the maximum number of values to be plotted is 6,000 and 
the maximum number of variables is 18. Each of those can be changed in a 
PARAMETER statement in the include file for common blocks. 

Approach 1 -- A few of the subroutines do not use the common block, they 
scale the axes, physically size the axes and draw the axes. A list of these 
subroutines is found in table D3. Arguments for these routines are described 
in the system documentation. As many as 80 characters can be used in the 
axes titles. 

Approach 2 -- If the subroutine library is used, the common blocks 
cannot be included in the users’ software. For this case, the set of 
utilities listed in table D4 are used to pass the data to the common blocks. 
Then utilities GPSTUP and PLTONE are called to make the plot. 

57 



Table Dl .--Graphical Kernel System subroutines used in utilities 

FORTRAN 77 Name 

GOPKS 
GCLKS 
GOPWK 
GCLWK 
GACWK 
GDAWK 
GSWN 
GSVP 
GSWKWN 
GSWKVP 
GTX 
GFA 
GPL 
GPM 
GSELNT 

GQOPS 
GQDSP 
GQCF 
GQTXFP 

GQCHXP 

GQCHSP 
GQCHH 
GQCHB 

GQTXX 
GSASF 
GSTXFP 
GSCHXP 

GSCHSP 
GSTXAL 
GSCHH 
GSCHU 
GSTXCI 
GSTXP 
GSFACI 
GSFAIS 
GSFASI 
GSLN 
GSPLCI 
GSMKSC 
GSPMCI 
GSMK 

GKS Function 

OPEN GKS 
CLOSE GKS 
OPEN WORKSTATION 
CLOSE WORKSTATION 
ACTIVATE WORKSTATION 
DEACTIVATE WORKSTATION 
SET WINDOW 
SET VIEWPORT 
SET WORKSTATION WINDOW 
SET WORKSTATION VIEWPORT 
TEXT 
FILL AREA 
POLYLINE 
POLYMARKER 
SELECT NORMALIZATION 
TRANSFORMATION 
INQUIRE OPERATING STATE VALUE 
INQUIRE DISPLAY SPACE SIZE 
INQUIRE COLOR FACILITIES 
INQUIRE TEXT FONT AND 
PRECISION 
INQUIRE CHARACTER EXPANSION 
FACTOR 
INQUIRE CHARACTER SPACING 
INQUIRE CHARACTER HEIGHT 
INQUIRE CHARACTER BASE 
VECTOR 
INQUIRE TEXT EXTENT 
SET ASPECT SOURCE FLAGS 
SET TEXT FONT AND PRECISION 
SET CHARACTER EXPANSION 
FACTOR 
SET CHARACTER SPACING 
SET TEXT ALIGNMENT 
SET CHARACTER HEIGHT 
SET CHARACTER UP VECTOR 
SET TEXT COLOR INDEX 
SET TEXT PATH 
SET FILL AREA COLOR INDEX 
SET FILL AREA INTERIOR STYLE 
SET FILL AREA STYLE INDEX 
SET LINETYPE 
SET POLYLINE COLOR INDEX 
SET MARKER SIZE SCALE FACTOR 
SET POLYMARKER COLOR INDEX 
SET MARKER TYPE 

58 



Table D2 .--Variables in common blocks 

COMMON block CPLOTB.INC 

YX(n) -values of data to be plotted (1 < n<6000) 
BUFPOS(j,k) -j =I,6 k=1,18 

-for time-series start (j=l)/end(j=2) positions in 
YX array for each time-series or variable plotted 
(positions 3,4 not needed). 
for x-y plots positions (j=l) and (j=2) for Y axis, 
positions (j=3,j=4) for X-axis 
for x-y plots positions (j=5,j=6) for size of symbol 
if CTYPE = 7 

COMMON block CPLOT.INC 

DEVCOD 
DEVTY P 

FE 
NCRV 
NVAR 
PLMX( 1) 
PLMN( 1) 
PLMN(2) 
PLMN(2) 
PLMX(3) 
PLW(3) 
PLMN( 4) 
PLMN(4) 
YMIN( k) 
YMAX( k) 
TICS(k) 

XTYPE 

YTYPE( i) 

-device code, system dependent number 
-output device category 

1-screen,2-printer(impact and laser),3-plotter 
4-GKS meta file, 5-DISSPLA meta file 

-Fortran unit number for GKS error file 
-number of curves 
-number of variables 
-maximum value for Y-axis. 
-minimum value for Y-axis. 
-maximum value for Y-axis on right side 
-minimum value for Y-axis on right side 
-maximum value for auxilary axis. 
-minimum value for auxilary axis. 
-maximum value for X-axis 
-minimum value for X-axis 
-k=1,18 minimum value for each variable 
-k=1,18 maximum value for each variable 
- number of tics on axes (default=10 except auxilary 

axis=2) 
k=l for Y-axis on left 
k=2 for Y-axis on right 
k=3 for auxilary axis 
k=4 for X-axis 
-type of X-axis 
O-time 
l-arithmetic 
2-logarithmetic 
3-probability percent (normal distribution) 99-l 
&recurrence interval (normal distribution) l-100 
5-probability fraction (normal distribution) .99-.Ol 
6-probability percent (normal distribution) l-99 
7-recurrence interval (normal distribution) 100-l 
8-probability fraction (normal distribution) O.Ol-.99 
-type of Y axis (i=l for left axis) (i=2 for right 
axis) 

O-none (applies only to right axis, 
left axis must be non-zero) 

59 



WHICH(k) 

CTYPE(k) 

DTYPE 

TITL(24) 
YLABL(80) 
YXLABL(80) 
YALABL(80) 
LW j,k) 

LBV( j,k) 

TSTEP(k) 
TUNITS(k) 
SDATIM(6) 
EDATIM(6) 
SYMBL(k) 

LNTYP(k) 

l-arithmetic 
2-logarithmetic 

-which axis for each variable (k=l,NVAR) 
l-left y-axis 
2-right y-axis 
3-auxilary 
4-x-axis 

-type of curve (k=l,NCRV) 
l-uniform time step with lines or symbols 

(main plot) 
2-uniform time-step with bars (main plot) 
3-uniform time-step with lines or symbols 

(auxilary plot on top) 
4-uniform time-step with bars (auxilary plot on top) 
5-non-uniform (date-tagged) time-series 
6-x-y plot 
7-X-Y plot with symbol sized on a third variable 

-data type for time-series 
O-mean or sum over time-step 
l-instantaneous or point data 

-title for the plot. 
-label for the y-axis. 
-label for other axis (XTYPE=2 or YTYPE(2) =0) 
-label for auxilary plot on top 
-j=1,18 k=l,NCRV 
-label for the k-th curve (20 characters) 
-j=l, 18, k=l,NVAR 
-label for the k-th variable (20 characters) 
-time step for each curve in TUNITS (k), k=l,NCRV 
-time units for each curve (2-min,4-day,5-mo,6-yr) k=l,NCRV 
-starting year,month,day,hour,minute, second of plot. 
-ending year,month,day, hour,minute, second of plot. 
-code for symbol type (k=l,NCRV) 
SYMBOL GKS CODE 
------------ --------------- 
NONE 0 
. 1 
+ 
* $ 
0 4 
X 5 

-code for type of line (k=l,NCRV) 
LINE GKS CODE 
v----w- --------------- 
NONE 0 
SOLID 1 
DASH 2 
DOT 
DOT-DASH 

60 



PATTRN(k) 

COLOR(k) 

BCOLOR 
YLEN 

XLEN 
ALEN 
YPAGE 
XPAGE 
XPHYS 
YPHYS 
SIZEL 
LOCLGD(j) 

TRANSF(j,k) 

BVALFG(4) 

BLNKIT(4) 

CTXT(i) 
CPR 

-Code for shading (k=l,NCRV) 
PATTERN GKS CODE 
------------- --------------- 
NONE 1 
SOLID 2 
HORIZ 
VERT z 
DIAGONAL 5 

-code for color (k=l,NCRV) 
COLOR GKS CODE 
---------- 
background 
B/W 
RED 
GREEN 
BLUE 
CYAN 
MAGENTA 
YELLOW 

--------------- 
0 
1 
2 

t 
5 
6 
7 

-background color code number (O=white, l=black) 
-length of y-axis in world coordinates (WC) or both main and 
auxilary 

axis plus small space between them. 
-length of x-axis (WC) 
-auxilary plot axis length (WC) 
-vertical page size (WC). 
-horizontal page size (WC). 
-physical origin (WC) in horizontal 
-physical origin (WC) in vertical 
-height of lettering (WC) 
-action for legend (j=1,2) 
-2.O=no legend 
-l.O=legend in upper left corner (default location) 

x,y=legend at fraction x and y of XLEN and YLEN 
from origin. (values between 0.0 

and 1.0) 
-transformation type for each variable (k=l,NVAR) 

(j=l for left main y-axis) 
(j=2 for right y-axis or x-axis) 
O=none 
l=arithmetic (no transformation) 
2=logarithmic 
3=Normal distribution 

-bad value flag for bottom,top,left,right 
l=clip,plot at point going off scale 
2=ignore, leave blank 
3=plot arrow pointing off scale, don't connect lines 
g=ignore,connect good points 

-min-max on y-axis and min-max on x-axis 
for box for no plotting (fractions from 0.0 to 1.0) 

-text to be placed on the plot (max 120 characters) 
-characters per line 

61 



NCHR 
FYT 
FXT 

-number of characters to use (up to 120) 
-fraction (0.0-1.0) of YLEN for upper left corner of text 
-fraction (0.0-1.0) of XLEN for upper left corner of text 

62 



Table D3 .--Subroutines not requiring common blocks 

AXAXIS - 
AYAXIS - 
TMAXIS - 
PBAXIS - 
LXAXIS - 
LYAXIS - 
SCALIT - 
SIZAXE - 

GPINIT - 
GPNCRV - 
GPDATR - 
GPTIME - 

GPLABL - 
GPCURV - 
GPLEDG - 
GPTEXT - 
GPDEVC - 
GPSIZE - 
GPBLNK - 
GPVAR - 

GPSCLE - 

GPGNRL - 

draws arithmetic X-axis 
draws arithmetic Y-axis 
draws time axis based on start/end dates 
draws probability X-axis in fraction, percent or recurrence interval 
draws logarithmic X-axis 
draws logarithmic Y-axis 
scales axes 
sets origin, axes lengths and letter size based on size of 

plotting surface 

Table D4 .--Subroutines to fill common block 

initializes both common blocks 
sets number of variables and curves 
adds data for a variable 
sets starting and ending time and time step and time units 

for each variable 
sets types of axes and titles 
sets symbol, color, line type, pattern and label for each curve 
sets upper left corner for legend 
sets supplementary text information to be printed on the plot 
sets code for device type 
set plot space, location of origin, axes lengths, and letter size 
sets window for no graphics 
sets minimum and maximum for each variable and which axes for 

each variable 
sets axes scales, number of tics, and action to be taken when 

plotting off scale 
sets color of background 
GPERFL - sets Fortran unit number for GKS error file 

63 



Approach 3 -- At this level, the applications programmer can use 
additional utilities in the library. This will let the user interactively 
modify variables pre-selected by the programmer such as symbol, line type, 
color, axes titles, or axes scales. Approach 3 is similar to Approach 2 
except a main program shell needs to be modified and used to initialize and 
set up the system. At this level, a user configuration file TERM.DAT, can be 
used to set device-dependent attributes such as font, text precision, 
symbols, line types, fill patterns, and colors. After some of the variables 
in the common blocks have been set, the programmer calls the subroutine 
PROPLT which has arguments to indicate which of the following groups of 
variables (1) can not be changed, (2) can be changed and (3) need to be 
changed : 

- data 
- device 
- axes 
- curve specifications 
- titles 
- extras 
- scales 
- sizes. 

At this point, control is turned over to the user to plot, modify, and re- 
plot until the user is finished and control is passed back to the program 
that called PROPLT. 

Use of the Program ANNIE for Graphics 

Each of the types of plots can be created using the interactive program 
ANNIE (Lumb, and others, 1990). ANNIE is a computer program for interactive 
hydrologic analysis and data management. Data can be entered from one of 
three types of files, Watershed Data Management (WDM) file, PLTGEN file and 
flat file. Data also can be entered from the terminal. The WDM file is a 
binary, direct access file designed for storage and retrieval of data for 
surface-water application programs. The PLTGEN file is a sequential, 
formatted file for time-series data. The flat file or terminal input lets 
the user specify the starting position and length of each variable on the 
records in the file. Alternately, the file or terminal input can contain all 
the values for the first variable in free field format followed by all the 
values for the next variable in free field format, and so forth. For free 
field format, the values need to be separated by blanks or commas. The 
values can be on one or more records with a maximum record length of 132 
bytes . Each variable in the free field format must start a new record. All 
of the other specifications for the plot are provided by way of menus. 

Examples of ANNIE graphics are shown in figures Do and DlO. The first 
is a probability plot that illustrates the use of additional text. The 
second is a time-series plot of streamflow, evaporation, and precipitation 
for the 1957 water year. Precipitation is plotted on an auxiliary plot that 
is an option with time-series plots. The axis on the auxiliary plot is 
limited to arithmetic. The curve for time-series data was plotted as a step 
function for mean values, and was plotted as a line connecting points for 
instantaneous values. 

64 



RFNUA-McEmENT PRmBILITY, fERENr 
GfXU13?4l FLOYD RIVER R-I JRES, l[ldl535-73 

Figure D9. --Example of probability plot. 

I 
----- 

,--L--- -- -- -- I -- I--’ 
IO-J I -- __-- 

LCT tm EC 
1958 

jpll ‘w ‘tm ‘RR ‘mu, ‘MC ‘JAI ‘RI; ‘SET 

oFwBRRNcI1,- 

Figure DlO .--Example of time-series plot. 

65 



EXPERIENCE WITH THE GRAPHICAL KERNEL SYSTEM 

GKS was not easy to learn. Although training courses are available from 
vendors, none were used. Two textbooks, one by Hopgood, 1983, and the other 
by Enderle, 1987, were quite helpful. 

The Fortran binding for GKS is at a basic level, Fortunately, the 
previous graphics subroutine library for ANNIE was implemented at a basic 
level in an attempt to meet publication standards. Thus, the translation was 
fairly straightforward for drawing lines, axes, and writing text. Most of 
the difficulty was experienced in learning how to use the transformation 
routines from the world coordinates, to normalized device coordinates, to 
device coordinates. Locating text on the plot was initially confusing. 
Additional text problems centered around implementation of GKS. 

Currently, the biggest disadvantage of GKS on the Prime is the 
inadequate implementation that is used. Other vendors are being evaluated as 
a potential source. Implementation of GKS on the personal computer is quite 
good and one vendor has drivers for over 120 devices. The Geological Survey 
has purchased the development library and a run-time distribution license for 
personal computers. 

SUMMARY AND CONCLUSIONS 

During the 1970's, a growing demand for computer graphics programming 
standards emerged. Numerous standards organizations around the world began 
developing ideas for graphics standards. During the mid 1980’s, the 
Graphical Kernel System was adopted as an international, American National, 
and Federal Government standard for computer-graphics programming. 

The Graphical Kernel System is a hardware-independent, language- 
independent device-independent application interface for two-dimensional 
output and interactive input, providing maximum portability of applications. 
The Graphical Kernel System addresses the main functional areas of computer 
graphics programming. The main components of the Graphical Kernel System are 
output primitives, coordinate systems, segmentation, interactive input, 
logical workstation, and metafile generation. 

The Graphical Kernel System is defined in a language-independent manner 
that specifies abstract routines. These abstract routines have been 
translated into standard language specific routines known as language 
bindings. The Graphical Kernel System has been implemented by numerous 
hardware and software vendors on most platforms, from microcomputers to 
supercomputers. The implementations most useful to the U.S. Geological 
Survey are those on Prime and UNIX-based workstations. 

The Graphical Kernel System has been used to implement graphics software 
for surface-water applications. The disadvantages are the inadequate 
implementations by vendors and the limited number of device drivers. These 
disadvantages will be reduced as vendors continue to improve their 
implementations. The Graphical Kernel System was difficult to learn, but 

66 



other developers in the Geological Survey can use the utilities instead of 
the Graphical Kernel System directly. 

The disadvantages are outweighted by the major advantage of portability. 
With the expense of developing and maintaining software, a common software 
package for Prime’s, UNIX-based workstations, and personal computers provides 
a major savings in resources. 

67 



REFERENCES CITED 

American National Standard for Information Systems, 1985, ANSI X3.124 
Computer Graphics-Graphical Kernel System (GKS) Functional Description, 
268 p. 

Enderle, G., Kansy, K., and Pfaff, G., 1987, Computer Graphics Programming. 
GKS - The Graphics Standard: New York, New York, Springer-Verlag, 632 p. 

Federal Information Processing Standard, 1986, FIPS PUB 120 Graphical Kernel 
System (GKS), 3 p. 

Hopgood, F. R. A., Duce, D. A., Gallop, J. R., and Sutcliffe, D. C., 1983, 
Introduction to the Graphical Kernel System: Orlando, Florida, Academic 
Press, Inc., 189 p. 

Lumb, Alan M., Kittle, John L., Jr., and Flynn, Kathleen M., 1990, Users 
Manual for ANNIE, A Computer Program for Interactive Hydrologic Analysis 
and Data Management: WRI 89-4080, U.S. Geological Survey, 236 p. 

68 


	WRIR 90-4162: USGS National Computer Technology Meeting: Proceedings, Phoenix, Arizona, November 14-18, 1988
	Contents, Page 1
	Contents, Page 2
	Contents, Page 3
	Magnetic-tape backup and routine maintenance procedures for a minicomputer system of the U.S. Geological Survey
	The development of distributor software for transmitting documents through a computer network
	Supporting different types of terminals in a distributed-information environment
	Displaying data from the National Water Data Exchange by use of a geographical information system
	Using a geographic information system to determine physical basin characteristics for use in flood-frequency equations
	The integration of computer graphics and text-editing programs
	Use of the graphical kernel system standard for hydrologic applications



